Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: mdl-33731353

ABSTRACT

For the two proteins myoglobin and fluoroacetate dehalogenase, we present a systematic comparison of crystallographic diffraction data collected by serial femtosecond (SFX) and serial synchrotron crystallography (SSX). To maximize comparability, we used the same batch of micron-sized crystals, the same sample delivery device, and the same data analysis software. Overall figures of merit indicate that the data of both radiation sources are of equivalent quality. For both proteins, reasonable data statistics can be obtained with approximately 5000 room-temperature diffraction images irrespective of the radiation source. The direct comparability of SSX and SFX data indicates that the quality of diffraction data obtained from these samples is linked to the properties of the crystals rather than to the radiation source. Therefore, for other systems with similar properties, time-resolved experiments can be conducted at the radiation source that best matches the desired time resolution.


Subject(s)
Proteins , Synchrotrons , Crystallography, X-Ray
2.
J Chem Phys ; 153(19): 194504, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33218233

ABSTRACT

High energy electron scattering of liquid water (H2O) at near-ambient temperature and pressure was performed in a transmission electron microscope (TEM) to determine the radial distribution of water, which provides information on intra- and intermolecular spatial correlations. A recently developed environmental liquid cell enables formation of a stable water layer, the thickness of which is readily controlled by pressure and flow rate adjustments of a humid air stream passing between two silicon nitride (Si3N4) membranes. The analysis of the scattering data is adapted from the x-ray methodology to account for multiple scattering in the H2O:Si3N4 sandwich layer. For the H2O layer, we obtain oxygen-oxygen (O-O) and oxygen-hydrogen (O-H) peaks at 2.84 Å and 1.83 Å, respectively, in good agreement with values in the literature. This demonstrates the potential of our approach toward future studies of water-based physics and chemistry in TEMs or electron probes of structural dynamics.

3.
Struct Dyn ; 4(5): 054308, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29152535

ABSTRACT

A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs) is the determination of time zero (T0)-the time an optical pulse (e.g., an optical laser) arrives coincidently with the probe pulse (e.g., a XFEL pulse) at the sample position. In some cases, T0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T0. In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated). Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV-IR) as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

4.
J Chem Phys ; 145(20): 204202, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27908131

ABSTRACT

Molecular dynamics simulations were performed to characterize the ablation process induced by a picosecond infrared laser (PIRL) operating in the regime of desorption by impulsive vibrational excitation (DIVE) of a model peptide (lysozyme)/counter-ion system in aqueous solution. The simulations were performed for ablation under typical experimental conditions found within a time-of-flight mass spectrometer (TOF-MS), that is in vacuum with an applied electric field (E = ± 107 V/m), for up to 2 ns post-ablation and compared to the standard PIRL-DIVE ablation condition (E = 0 V/m). Further, a simulation of ablation under an extreme field condition (E = 1010 V/m) was performed for comparison to extend the effective dynamic range of the effect of the field on charge separation. The results show that the plume dynamics were retained under a typical TOF-MS condition within the first 1 ns of ablation. Efficient desorption was observed with more than 90% of water molecules interacting with lysozyme stripped off within 1 ns post-ablation. The processes of ablation and desolvation of analytes were shown to be independent of the applied electric field and thus decoupled from the ion separation process. Unlike under the extreme field conditions, the electric field inside a typical TOF-MS was shown to modify the ions' motion over a longer time and in a soft manner with no enhancement to fragmentation observed as compared to the standard PIRL-DIVE. The study indicates that the PIRL-DIVE ablation mechanism could be used as a new, intrinsically versatile, and highly sensitive ion source for quantitative mass spectrometry.


Subject(s)
Infrared Rays , Lasers , Molecular Dynamics Simulation , Muramidase/chemistry , Water/chemistry , Electricity , Protein Conformation , Solutions
5.
Struct Dyn ; 3(3): 034302, 2016 May.
Article in English | MEDLINE | ID: mdl-27226978

ABSTRACT

A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the "medium" energy regime (1-10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples.

6.
J Proteomics ; 134: 193-202, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26778141

ABSTRACT

Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. BIOLOGICAL SIGNIFICANCE: Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen.


Subject(s)
Infrared Rays , Lasers , Palatine Tonsil/chemistry , Pancreas/chemistry , Proteomics , Specimen Handling , Animals , Humans , Mice , Proteomics/instrumentation , Proteomics/methods , Rats, Wistar , Specimen Handling/instrumentation , Specimen Handling/methods
7.
Nucl Instrum Methods Phys Res A ; 829: 24-29, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-28706325

ABSTRACT

X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser-, accelerator,- X-ray scientists as well as spectroscopists and biochemists optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. Ultimately, the new capability, attosecond serial X-ray crystallography and spectroscopy, will be applied to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis.

8.
Nanotechnology ; 26(28): 284001, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26111866

ABSTRACT

The prospect for spatial imaging with mass spectroscopy at the level of the cell requires new means of cell extraction to conserve molecular structure. To this aim, we demonstrate a new laser extraction process capable of extracting intact biological entities with conserved biological function. The method is based on the recently developed picosecond infrared laser (PIRL), designed specifically to provide matrix-free extraction by selectively exciting the water vibrational modes under the condition of ultrafast desorption by impulsive vibrational excitation (DIVE). The basic concept is to extract the constituent protein structures on the fastest impulsive limit for ablation to avoid excessive thermal heating of the proteins and to use strongly resonant 1-photon conditions to avoid multiphoton ionization and degradation of the sample integrity. With various microscope imaging and biochemical analysis methods, nanoscale single protein molecules, viruses, and cells in the ablation plume are found to be morphologically and functionally identical with their corresponding controls. This method provides a new means to resolve chemical activity within cells and is amenable to subcellular imaging with near-field approaches. The most important finding is the conserved nature of the extracted biological material within the laser ablation plume, which is fully consistent with in vivo structures and characteristics.


Subject(s)
Lasers , Proteins/chemistry , Proteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Ferritins/isolation & purification , Ferritins/ultrastructure , Humans , Infrared Rays , Saccharomyces cerevisiae/ultrastructure , Tobacco Mosaic Virus/isolation & purification , Tobacco Mosaic Virus/ultrastructure
9.
J Chem Phys ; 130(20): 204110, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19485440

ABSTRACT

A simulation formalism for the nonlinear response of vibrational excitons is presented and applied to the OH stretching vibrations of neat liquid H(2)O. The method employs numerical integration of the Schrodinger equation and allows explicit treatment of fluctuating transition frequencies, vibrational couplings, dipole moments, and the anharmonicities of all these quantities, as well as nonadiabatic effects. The split operator technique greatly increases computational feasibility and performance. The electrostatic map for the OH stretching vibrations in liquid water employed in our previous study [A. Paarmann et al., J. Chem. Phys. 128, 191103 (2008)] is presented. The two-dimensional spectra are in close agreement with experiment. The fast 100 fs dynamics are primarily attributed to intramolecular mixing between states in the two-dimensional OH stretching potential. Small intermolecular couplings are sufficient to reproduce the experimental energy transfer time scales. Interference effects between Liouville pathways in excitonic systems and their impact on the analysis of the nonlinear response are discussed.


Subject(s)
Computer Simulation , Models, Chemical , Physical Therapy Modalities , Quantum Theory , Time Factors , Vibration , Water/chemistry , Energy Transfer , Models, Molecular , Molecular Structure , Nanotechnology , Scattering, Radiation
10.
Opt Express ; 17(12): 9764-79, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19506626

ABSTRACT

Optical two-dimensional photon-echo spectroscopy is realized with shaped excitation pulses, allowing coherent control of twodimensional spectra. This development enables probing of state-selective quantum decoherence and phase/time sensitive couplings between states. The coherently-controlled two-dimensional photon-echo spectrometer with two pulse shapers is based on a passively stabilized four-beam interferometer with diffractive optic, and allows heterodyne detection of signals with a long-term phase stability of approximately Lambda/100. The two-dimensional spectra of Rhodamine 101 in a methanol solution, measured with unshaped and shaped pulses, exhibit significant differences. We observe in particular, the appearance of fine structure in the spectra obtained using shaped excitation pulses.


Subject(s)
Electronics/instrumentation , Spectrum Analysis/instrumentation , Tomography, Optical Coherence/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Photons , Reproducibility of Results , Sensitivity and Specificity
11.
Opt Express ; 16(5): 3334-41, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18542423

ABSTRACT

Real time views of atomic motion can be achieved using electron pulses as structural probes. The requisite time resolution requires knowledge of both the electron pulse duration and the exact timing of the excitation pulse and the electron probe to within 10 - 100 fs accuracy. By using an intensity grating to enhance the pondermotive force, we are now able to fully characterize electron pulses and to confirm many body simulations with laser pulse energies on the microjoule level. This development solves one of the last barriers to the highest possible time resolution for electron probes.


Subject(s)
Lasers , Luminescent Measurements/methods , Models, Theoretical , Signal Processing, Computer-Assisted , Computer Simulation , Electrons , Light , Scattering, Radiation
12.
J Chem Phys ; 128(19): 191103, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18500848

ABSTRACT

Two-dimensional infrared photon echo and pump probe studies of the OH stretch vibration provide a sensitive probe of the correlations and couplings in the hydrogen bond network of liquid water. The nonlinear response is simulated using numerical integration of the Schrodinger equation with a Hamiltonian constructed to explicitly treat intermolecular coupling and nonadiabatic effects in the highly disordered singly and doubly excited vibrational exciton manifolds. The simulated two-dimensional spectra are in close agreement with our recent experimental results. The high sensitivity of the OH stretch vibration to the bath dynamics is found to arise from intramolecular mixing between states in the two-dimensional anharmonic OH stretch potential. Surprisingly small intermolecular couplings reproduce the experimentally observed intermolecular energy transfer times.


Subject(s)
Chemistry, Physical/methods , Spectrophotometry, Infrared/methods , Water/chemistry , Diffusion , Energy Transfer , Hydrogen Bonding , Infrared Rays , Models, Chemical , Models, Statistical , Photons , Time Factors
13.
Lasers Surg Med ; 39(5): 458-67, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17565733

ABSTRACT

BACKGROUND AND OBJECTIVE: This study investigated the healing of femtosecond laser created wounds in an animal model. STUDY DESIGN: We have assessed the healing of critical size wounds in mice calvaria using three different wounding techniques: carbide bur, diamond end-cutting bur, and ultrafast femtosecond laser, and in the presence or absence of bone morphogenetic protein-7 (BMP). Wound closure was examined using microcomputerized tomography at 3, 6, 9, and 12 weeks. RESULTS: Results have shown partial closure at up to 12 weeks with all techniques that did not involve the use of BMP, with the least closure noted in the laser groups as suggested by two-dimensional radiographic analysis. Bone volume measurements appeared slightly lower for the laser than for the mechanical groups, however statistically significant differences were seen only at week 6. No significant differences in closure were noted for the different methods in the BMP treated groups. CONCLUSIONS: Femtosecond laser cutting demonstrated an unsurpassed precision when compared to mechanical instruments. The addition of BMP led to very rapid healing with complete closure seen as early as 3 weeks and overcomes any potential healing delays that may arise from laser tissue cutting.


Subject(s)
Bone Morphogenetic Proteins/pharmacology , Lasers , Neuroprotective Agents/pharmacology , Osteotomy/instrumentation , Skull/injuries , Transforming Growth Factor beta/pharmacology , Wound Healing/drug effects , Animals , Bone Morphogenetic Protein 7 , Imaging, Three-Dimensional , Mice , Mice, Inbred ICR , Microradiography , Models, Animal , Time Factors , Tomography, X-Ray Computed
14.
J Phys Chem B ; 110(40): 19867-76, 2006 Oct 12.
Article in English | MEDLINE | ID: mdl-17020372

ABSTRACT

The heterodyned fifth-order Raman response of liquid benzene has been measured and characterized by exploiting the passive-phase stabilization of diffractive optics. This result builds on our previous work with liquid carbon disulfide and extends the spectroscopy to a new liquid for the first time. The all-parallel and Dutch Cross polarization tensor elements are presented for both the experimental results and a finite-field molecular dynamics simulation. The overall response characteristics are similar to those of liquid carbon disulfide: a complete lack of signal along the pump delay, an elongated signal along the probe delay, and a short-lived signal along the time diagonal. Of particular interest is the change in phase between the nuclear and electronic response along the probe delay and diagonal which is not seen in CS2. Good agreement is achieved between the experiment and the finite-field molecular dynamics simulation. The measurement of the low-frequency Raman two-time delay correlation function indicates the intermolecular modes of liquid benzene to be primarily homogeneously broadened and that the liquid loses its nuclear rephasing ability within 300 fs. This rapid loss of nuclear correlations indicates a lack of modal character in the low-frequency motions of liquid benzene. This result is a validation of the general nature of the technique and represents an important step forward with respect to the use of nonlinear spectroscopy to directly access information on the anharmonic motions of liquids.

15.
Phys Rev Lett ; 95(14): 147402, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16241692

ABSTRACT

The multilevel structure and vibrational couplings of O-H stretching transitions in intermolecular hydrogen bonds of acetic acid dimers are determined by femtosecond two-dimensional photon-echo spectroscopy in the infrared. Combining experiment and theoretical calculations, we separate Fermi resonances with combination tones of fingerprint modes from anharmonic couplings to underdamped low-frequency modes of the dimer. A multilevel density matrix approach based on density functional theory calculations reproduces the experimental results and reveals coupling strengths of both mechanisms on the order of 40-150 cm(-1).

16.
Biochim Biophys Acta ; 1749(2): 148-72, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15927874

ABSTRACT

Protein structure is fundamentally related to function. However, static structures alone are insufficient to understand how a protein works. Dynamics play an equally important role. Given that proteins are highly associated aperiodic systems, it may be expected that protein dynamics would follow glass-like dynamics. However, protein functions occur on time scales orders of magnitude faster than the time scales typically associated with glassy systems. It is becoming clear that the reaction forces driving functions do not sample entirely the large number of configurations available to a protein but are highly directed along an optimized pathway. Could there be any correlation between specific topological features in protein structures and dynamics that leads to strongly correlated atomic displacements in the dynamical response to a perturbation? This review will try to provide an answer by focusing upon recent nonlinear optical studies with the aim of directly observing functionally important protein motions over the entire dynamic range of the protein response function. The specific system chosen is photoinduced dynamics of ligand dissociation at the active site in heme proteins, with myoglobin serving as the simplest model system. The energetics and nuclear motions from the very earliest events involved in bond breaking on the femtosecond time scale all the way out to ligand escape and bimolecular rebinding on the microsecond and millisecond time scale have been mapped out. The picture that is emerging is that the system consists of strongly coupled motions from the very instant the bond breaks at the active site that cascade into low frequency collective modes specific to the protein structure. It is this coupling that imparts the ability of a protein to function on time scales more commensurate with liquids while simultaneously conserving structural integrity akin to solids.


Subject(s)
Energy Transfer/physiology , Heme/chemistry , Heme/metabolism , Models, Molecular , Nonlinear Dynamics , Protein Binding , Binding Sites/physiology , Heme/physiology , Myoglobin/metabolism , Photolysis , Structure-Activity Relationship , Time Factors
17.
Nature ; 434(7030): 199-202, 2005 Mar 10.
Article in English | MEDLINE | ID: mdl-15758995

ABSTRACT

Many of the unusual properties of liquid water are attributed to its unique structure, comprised of a random and fluctuating three-dimensional network of hydrogen bonds that link the highly polar water molecules. One of the most direct probes of the dynamics of this network is the infrared spectrum of the OH stretching vibration, which reflects the distribution of hydrogen-bonded structures and the intermolecular forces controlling the structural dynamics of the liquid. Indeed, water dynamics has been studied in detail, most recently using multi-dimensional nonlinear infrared spectroscopy for acquiring structural and dynamical information on femtosecond timescales. But owing to technical difficulties, only OH stretching vibrations in D2O or OD vibrations in H2O could be monitored. Here we show that using a specially designed, ultrathin sample cell allows us to observe OH stretching vibrations in H2O. Under these fully resonant conditions, we observe hydrogen bond network dynamics more than one order of magnitude faster than seen in earlier studies that include an extremely fast sweep in the OH frequencies on a 50-fs timescale and an equally fast disappearance of the initial inhomogeneous distribution of sites. Our results highlight the efficiency of energy redistribution within the hydrogen-bonded network, and that liquid water essentially loses the memory of persistent correlations in its structure within 50 fs.


Subject(s)
Water/chemistry , Absorption , Diffusion , Hydrogen Bonding , Nanotechnology , Vibration
18.
Proc Natl Acad Sci U S A ; 100(9): 4990-4, 2003 Apr 29.
Article in English | MEDLINE | ID: mdl-12697894

ABSTRACT

Model studies of the ligand photodissociation process of carboxymyoglobin have been conducted by using amplified few-cycle laser pulses short enough in duration (<10 fs) to capture the phase of the induced nuclear motions. The reaction-driven modes are observed directly in real time and depict the pathway by which energy liberated in the localized reaction site is efficiently channeled to functionally relevant mesoscale motions of the protein.


Subject(s)
Cytochrome c Group/chemistry , Myoglobin/chemistry , Animals , Carbon Monoxide , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...