Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 36(9): 1430-1440, 2018 09.
Article in English | MEDLINE | ID: mdl-29761600

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis toward myelopoiesis, and an impairment of lineage- c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared with Akita mice, ACE2-/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represents a therapeutic strategy for prevention of diabetic retinopathy. Stem Cells 2018;36:1430-1440.


Subject(s)
Bone Marrow/metabolism , Diabetic Retinopathy/chemically induced , Peptidyl-Dipeptidase A/adverse effects , Peptidyl-Dipeptidase A/deficiency , Angiotensin-Converting Enzyme 2 , Animals , Disease Models, Animal , Humans , Mice
2.
Invest Ophthalmol Vis Sci ; 49(11): 5094-102, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18599562

ABSTRACT

PURPOSE: To define the molecular pharmacology underlying the antiangiogenic effects of nonpeptide imidazolidine-2,4-dione somatostatin receptor agonists (NISAs) and evaluate the efficacy of NISA in ocular versus systemic delivery routes in ocular disease models. METHODS: Functional inhibitory effects of the NISAs and the somatostatin peptide analogue octreotide were evaluated in vitro by chemotaxis, proliferation, and tube-formation assays. The oxygen-induced retinopathy (OIR) model and the laser model of choroidal neovascularization (CNV) were used to test the in vivo efficacy of NISAs. Transscleral permeability of a candidate NISA was also measured. RESULTS: NISAs inhibited growth factor-induced HREC proliferation, migration and tube formation with submicromolar potencies (IC(50), 0.1-1.0 microM) comparable to octreotide. In the OIR model, systemic administration of the NISAs RFE-007 and RFE-011 inhibited retinal neovascularization in a dose-dependent manner, comparable to octreotide. In the CNV model, intravitreal RFE-011 resulted in a 56% reduction (P < 0.01) in CNV lesion area, whereas systemic administration resulted in a 35% reduction (P < 0.05) in lesion area. RFE-011 demonstrated transscleral penetration. CONCLUSIONS: Micromolar concentrations of octreotide and NISAs are necessary for antiangiogenic effects, whereas nanomolar concentrations are effective for endocrine inhibition. This suggests that the antiangiogenic activity of NISAs and octreotide is mediated by an overall much less efficient downstream coupling mechanism than is growth hormone release. As a result, the intravitreal or transscleral route of administration should be seriously considered for future clinical studies of SSTR2 agonists used for treatment of ocular neovascularization to ensure efficacious concentrations in the target retinal and choroidal tissue.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/drug therapy , Gene Expression/drug effects , Imidazolidines/agonists , RNA/genetics , Receptors, Somatostatin/genetics , Retinal Neovascularization/drug therapy , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacokinetics , Animals , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/pharmacokinetics , Antineoplastic Agents, Hormonal/therapeutic use , Autoradiography , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Humans , Injections , Mice , Mice, Inbred C57BL , Octreotide/administration & dosage , Octreotide/pharmacokinetics , Octreotide/therapeutic use , Ophthalmic Solutions , Polymerase Chain Reaction , Rabbits , Receptors, Somatostatin/metabolism , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Sclera , Treatment Outcome , Vitreous Body
SELECTION OF CITATIONS
SEARCH DETAIL
...