Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 127(21): 4670-4681, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37216680

ABSTRACT

Absorption spectroscopy has long been known as a technique for making molecular concentration measurements and has received enhanced visibility in recent years with the advent of new techniques, like cavity ring-down spectroscopy, that have increased its sensitivity. To apply the method, it is necessary to have a known molecular absorption cross section for the species of interest, which typically is obtained by measurements of a standard sample of known concentration. However, this method fails if the species is highly reactive, and indirect means for attaining the cross section must be employed. The HO2 and alkyl peroxy radicals are examples of reactive species for which absorption cross sections have been reported. This work explores and describes for these peroxy radicals the details of an alternative approach for obtaining these cross sections using quantum chemistry methods for the calculation of the transition dipole moment upon whose square the cross section depends. Likewise, details are given for obtaining the transition moment from the experimentally measured cross sections of individual rovibronic lines in the near-IR Ã-X̃ electronic spectrum of HO2 and the peaks of the rotational contours in the corresponding electronic transitions for the alkyl (methyl, ethyl, and acetyl) peroxy radicals. In the case of the alkyl peroxy radicals, good agreement for the transition moments, ≈20%, is found between the two methods. However, rather surprisingly, the agreement is significantly poorer, ≈40%, for the HO2 radical. Possible reasons for this disagreement are discussed.

2.
Phys Chem Chem Phys ; 24(15): 8749-8762, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35352070

ABSTRACT

Vibronically resolved laser-induced fluorescence/dispersed fluorescence (LIF/DF) and cavity ring-down (CRD) spectra of the electronic transition of the calcium isopropoxide [CaOCH(CH3)2] radical have been obtained under jet-cooled conditions. An essentially constant energy separation of 68 cm-1 has been observed for the vibrational ground levels and all fundamental vibrational levels accessed in the LIF measurement. To simulate the experimental spectra and assign the recorded vibronic bands, Franck-Condon (FC) factors and vibrational branching ratios (VBRs) are predicted from vibrational modes and their frequencies calculated using the complete-active-space self-consistent field (CASSCF) and equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) methods. Combined with the calculated electronic transition energy, the computational results, especially those from the EOM-CCSD calculations, reproduced the experimental spectra with considerable accuracy. The experimental and computational results suggest that the FC matrix for the studied electronic transition is largely diagonal, but transitions from the vibrationless levels of the à state to the X̃-state levels of the CCC bending (ν14 and ν15), CaO stretch (ν13), and CaOC asymmetric stretch (ν9 and ν11) modes also have considerable intensities. Transitions to low-frequency in-plane [ν17(a')] and out-of-plane [ν30(a'')] CaOC bending modes were observed in the experimental LIF/DF spectra, the latter being FC-forbidden but induced by the pseudo-Jahn-Teller (pJT) effect. Both bending modes are coupled to the CaOC asymmetric stretch mode via the Duschinsky rotation, as demonstrated in the DF spectra obtained by pumping non-origin vibronic transitions. The pJT interaction also induces transitions to the ground-state vibrational level of the ν10(a') mode, which has the CaOC bending character. Our combined experimental and computational results provide critical information for future direct laser cooling of the target molecule and other alkaline earth monoalkoxide radicals.

3.
J Chem Phys ; 155(2): 024301, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34266255

ABSTRACT

Laser-induced fluorescence/dispersed fluorescence (LIF/DF) and cavity ring-down spectra of the A1̃2A''/A2̃2A'-X̃2A' electronic transition of the calcium ethoxide (CaOC2H5) radical have been obtained under jet-cooled conditions. An essentially constant Ã2-Ã1 energy separation for different vibronic levels is observed in the LIF spectrum, which is attributed to both the spin-orbit (SO) interaction and non-relativistic effects. Electronic transition energies, vibrational frequencies, and spin-vibrational eigenfunctions calculated using the coupled-cluster method, along with results from previous complete active space self-consistent field calculations, have been used to predict the vibronic energy level structure and simulate the recorded LIF/DF spectra. Although the vibrational frequencies and Franck-Condon (FC) factors calculated under the Born-Oppenheimer approximation and the harmonic oscillator approximation reproduce the dominant spectral features well, the inclusion of the pseudo-Jahn-Teller (pJT) and SO interactions, especially those between the A1̃2A″/A2̃2A' and the B̃2A' states, induces additional vibronic transitions and significantly improves the accuracy of the spectral simulations. Notably, the spin-vibronic interactions couple vibronic levels and alter transition intensities. The calculated FC matrix for the A1̃2A''/A2̃2A'-X̃2A' transition contains a number of off-diagonal matrix elements that connect the vibrational ground levels to the levels of the ν8 (CO stretch), ν11 (OCC bending), ν12 (CaO stretch), ν13 (in-plane CaOC bending), and ν21 (out-of-plane CaOC bending) modes, which are used for vibrational assignments. Transitions to the ν21(a″) levels are allowed due to the pJT effect. Furthermore, when LIF transitions to the Ã-state levels of the CaOC-bending modes, ν13 and ν21, are pumped, A1̃2A''/A2̃2A'→X̃2A' transitions to the combination levels of these two modes with the ν8, ν11, and ν12 modes are also observed in the DF spectra due to the Duschinsky mixing. Implications of the present spectroscopic investigation to laser cooling of asymmetric-top molecules are discussed.

4.
J Phys Chem A ; 125(7): 1402-1412, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33565876

ABSTRACT

Selected vibronic bands of the B̃ ← X̃ laser-induced fluorescence (LIF) spectra of jet-cooled 2-pentoxy and 2-hexoxy, including the origin and CO-stretch bands, have been measured with rotational resolution and analyzed using (1) an effective Hamiltonian that comprises a rotational part and a spin-rotation (SR) part (the "isolated-states model") and (2) a recently developed Hamiltonian in which the nearly degenerate à and X̃ states are treated together (the "coupled-states model") (see Liu, J., J. Chem. Phys. 2018, 148, 124112). The observed rotational and fine structures of the strongest vibronic bands have first been simulated using a genetic algorithm with the isolated-states model. The parameters for the simulation include rotational constants for both the X̃ and B̃ states, which can be calculated from the electronic structure theory, as well as the electronic SR constants of the X̃ state and the transition dipole moments (TDMs), both of which are predicted based on their transferability in an "orbital-fixed coordinate system" using iso-propoxy as the reference molecule. Quantum chemistry calculations suggest that the lowest two electronic (X̃ and Ã) states of secondary alkoxy radicals have small energy separations on the order of 100 cm-1 (see Part I of this series: J. Phys. Chem. A 2021, DOI: 10.1021/acs.jpca.0c10662). The electron configurations of these two nearly degenerate states have been determined by comparing the experimentally determined rotational constants and the TDMs to the ones predicted for the X̃ and à states. The experimental LIF spectra were also simulated with the coupled-states model, in which the effective spin-orbit (SO) constants (aζed) and the SO-free separation between the à and the X̃ states (ΔE0) have been determined. Molecular constants derived from fitting the rotational and fine structures of the experimental LIF spectra enabled unambiguous assignment of the observed vibronic bands to specific conformers of 2-pentoxy and 2-hexoxy as reported in Part I.

5.
J Phys Chem A ; 125(7): 1391-1401, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33565880

ABSTRACT

We report vibronically resolved laser-induced fluorescence (LIF) spectra of jet-cooled C5-C10 secondary alkoxy radicals. The LIF spectra demonstrate vibronic structures similar to smaller (C3-C4) secondary alkoxies. For 2-pentoxy and 2-hexoxy, rotationally resolved LIF spectra have also been recorded. Two types of rotational structures have been observed in vibronic bands of each molecule. Extensive quantum chemistry calculations have been performed on 2-pentoxy and 2-hexoxy. The computed results include the relative energies of conformers, their geometries, and the energy separations between the nearly degenerate à and X̃ electronic states (ΔEÃ-X̃). Based on the similarity between the vibronic structures of different secondary alkoxies and calculated molecular parameters, including the relative energies of conformers, the B̃ ← X̃ transition frequencies, and the vibrational frequencies, strong vibronic bands in the LIF spectra are assigned to the origin bands and CO stretch bands of the two lowest-energy conformers of each secondary alkoxy radical. The distinct rotational structures of the two different conformations of 2-pentoxy and 2-hexoxy will be simulated and analyzed in Part II of this series ( J. Phys. Chem. A 2021, DOI: 10.1021/acs.jpca.0c10663).

6.
J Chem Phys ; 153(17): 174306, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33167646

ABSTRACT

Rotationally and fine-structure resolved B̃←X̃ laser-induced fluorescence (LIF) spectra of alkoxy radicals have been simulated with a "coupled two-states model" [J. Liu, J. Chem. Phys. 148, 124112 (2018)], in which the nearly degenerate X̃ and à states are considered together. These two electronic states are separated by the "difference potential" and coupled by the spin-orbit (SO) interaction and the Coriolis interaction. Molecular constants determined in fitting the LIF spectra using the coupled two-states model provide quantitative insight into the SO and Coriolis interactions, as well as other intramolecular dynamics, including the pseudo-Jahn-Teller effect. The spectroscopic model also allows semi-quantitative prediction of effective spin-rotation constants using molecular geometry and SO constants, which can be calculated ab initio with considerable accuracy. The dependence of fit values of molecular constants on the size and conformation of alkoxy radicals is discussed.

7.
J Chem Phys ; 151(13): 134303, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31594358

ABSTRACT

Laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of the Ã2E-X̃2A1 electronic transition of the calcium methoxide (CaOCH3) radical have been obtained under jet-cooled conditions. Complete active space self-consistent field and coupled-cluster calculations on the free radical were performed to aid the assignment of vibronic transitions observed in the LIF/DF spectra. In addition to dominant spectral features that are well reproduced by vibrational frequencies and Franck-Condon (FC) factors calculated ab initio, the FC matrix for the Ã2E-X̃2A1 electronic transition contains considerable off-diagonal elements that connect (i) the CaO-stretch (ν4) mode and non-CaO stretch modes and (ii) the asymmetric CaOC stretch (ν3) and the CaOC bending (ν8) modes. The Jahn-Teller and pseudo-Jahn-Teller interactions involving the Ã2E state as well as the spin-orbit interaction induce additional vibronic transitions that are not allowed under the Born-Oppenheimer approximation. Additionally, anharmonic vibrational terms in the ground state induce transitions that are forbidden in the harmonic-oscillator approximation. Spin-orbit splitting has been observed for several vibrational levels of the Ã2E state, and an essentially constant value was measured at all levels accessed in the LIF experiment. Implications of the present spectroscopic investigation to the proposed schemes of laser-cooling MOCH3 (M = alkaline earth metals) molecules and detection of time-reversal-symmetry-violating interactions are discussed.

8.
J Phys Chem A ; 123(23): 4990-5004, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31117600

ABSTRACT

A theoretical and computational framework is presented for the parameters h1 and h2 that appear in the rotational Hamiltonian for molecules subject to the Jahn-Teller effect. Expressions that relate h1 and h2 to first and second moments of the degenerate normal coordinates as well as derivatives of the inertia tensor are presented in detail for both cylindrical and Cartesian coordinate systems. The method is demonstrated for three situations in which experimental information about h1 (and/or h2) is available: the ground 2E1″ and 2E states of the cyclopentadienyl (C5H5) and methoxy (CH3O) radicals, respectively, and the excited 2E″ state of the nitrate (NO3) radical. Results for h1 and h2 parametrized by ab initio calculations exhibit good agreement with measured values, and they are demonstrably superior to those obtained with an approach based on first-order perturbation theory. The computational technology developed for h1 and h2 can be used to benchmark quantum chemistry calculations for molecules with Jahn-Teller effects and facilitate the analysis of their spectra.

9.
J Phys Chem A ; 121(50): 9619-9630, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29190423

ABSTRACT

The manifestations of CH stretch/torsion/rotation coupling in the region of the CH stretch fundamentals are explored in the CH3OO radical. Following our earlier study of the fundamental in the totally symmetric CH stretch (the ν2 fundamental), this work focuses on the other two CH stretch fundamentals, ν1 and ν9, which would be degenerate in the absence of a barrier in the potential along the methyl torsion coordinate. The simplest model, which assumes a decoupling of the CH stretch vibrations from the torsion, fails to reproduce several important features of the spectrum. Specifically, the absence of a strong peak around the origin of the ν1 fundamental and broadening of the strong peak near the origin in the observed spectrum of the ν9 fundamental are not captured by this model. The origins of these features are explored through two more sophisticated treatments of the torsion/CH stretch couplings. In the first, a four-dimensional potential based on the three CH stretches and the torsion is developed and shown to reproduce both of these features. On the basis of the results of these calculations, the calculated parameters are adjusted to simulate the recorded spectrum. To further explore the torsion/CH stretch couplings in CH3OO, a 9-state model Hamiltonian is developed and discussed. The implications of various types of couplings on the observed energy level patterns are also discussed.

10.
J Phys Chem A ; 121(1): 98-112, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-27978619

ABSTRACT

Near-infrared cavity ringdown spectra were recorded following the photolysis of dihalomethanes in O2/N2 mixtures. In particular, photolysis of CH2I2 under conditions previously reported to produce the simplest Criegee intermediate, CH2O2, gave a complex, structured spectrum between 6800 and 9000 cm-1, where the lowest triplet-singlet transition (ã-X̃) of CH2O2 might be expected. To help identify the carrier of the spectrum, extensive electronic structure calculations were performed on the ã and X̃ states of CH2O2 and the lowest two doublet states of the iodomethylperoxy radical, CH2IO2, which also could be produced by the chemistry and whose Ã-X̃ transition likely lies in this spectral region. The conclusion of these calculations is that the ã-X̃ transition of CH2O2 clearly falls outside the observed spectral range and would be extremely weak both because it is spin-forbidden and because of a large geometric change between the ã and X̃ states. Moreover, only a shallow well (with a barrier to dissociation of less than 1900 cm-1) is predicted on the ã state, which likely precludes the existence of long-lived states. Calculations for the Ã-X̃ transition of CH2IO2 are generally consistent with the observed spectrum in terms of both the electronic origin and vibrational frequencies in the à state. To confirm the carrier assignment to CH2IO2, calculations beyond the Franck-Condon approximation were carried out to explain the hot band structure of the large-amplitude, low-frequency O-O-C-I torsion mode, ν12. Photolysis of other dihalomethanes produced similar spectra which were analyzed and assigned to CH2ClO2 and CH2BrO2. Experimental values for the electronic energies and frequencies for several à state vibrations and the ν12 vibration of the X̃ state of each are reported. In addition, the observed spectra were used to follow the self-reaction of the CH2IO2 species and its reaction with SO2. The rates of these reactions are dramatically faster than those of unsubstituted alkyl peroxy radicals and approach those of the Criegee intermediate.

11.
J Phys Chem A ; 120(27): 4827-37, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-26900645

ABSTRACT

With a step-scan Fourier-transform spectrometer we recorded temporally resolved infrared absorption spectra of CH3OO radicals that were produced upon irradiation of CH3COCH3 and O2 at 193 nm in a flowing mixture. At a resolution of 0.15 cm(-1), the rotational structure of the ν2 band of CH3OO near 2954.4 cm(-1) is partially resolved and shows an unexpectedly broadened, and somewhat distorted, Q-branch. A 4D model Hamiltonian, consisting of three CH stretches and the methyl torsion, was developed to explore the origins of this broadening. The vibrational progressions predicted by the model Hamiltonian and the rotational contours of the ν2 band, based on experimental ground-state rotational parameters and their values scaled by their calculated ratios for the upper state, produced simulations in satisfactory agreement with the observed spectrum. These results provide new insight into the vibrational couplings in CH3OO.

12.
J Phys Chem A ; 119(49): 11804-12, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26524342

ABSTRACT

The vibrational structures of the Ã(2)A1 and X̃(2)E states of t-butoxy were obtained in jet-cooled laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectroscopic measurements. The observed transitions are assigned based on vibrational frequencies calculated using the complete active space self-consistent field (CASSCF) method and the predicted Franck-Condon factors. The spin-orbit splitting was measured to be 36(5) cm(-1) for the lowest vibrational level of the ground (X̃(2)E) state, which is significantly smaller than that of methoxy, and increases with increasing vibrational quantum number of the CO stretch mode. Vibronic analysis of the DF spectra suggests that Jahn-Teller active modes of the ground-state t-butoxy radical are similar to those of methoxy and would be the same if methyl groups were replaced by hydrogen atoms. The rotational and fine structure of the LIF transition to the first CO stretch overtone level of the Ã(2)A1 state has been simulated using a spectroscopic model first proposed for methoxy, yielding an accurate determination of the rotational constants of both à and X̃ states.

13.
J Chem Phys ; 142(18): 184305, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25978889

ABSTRACT

The A˜(2)E(″)←X˜(2)A2 (') spectrum of NO3 radical from 7550 cm(-1) to 9750 cm(-1) has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 (1) band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.

14.
Nat Commun ; 5: 4635, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25105473

ABSTRACT

Directly monitoring atomic motion during a molecular transformation with atomic-scale spatio-temporal resolution is a frontier of ultrafast optical science and physical chemistry. Here we provide the foundation for a new imaging method, fixed-angle broadband laser-induced electron scattering, based on structural retrieval by direct one-dimensional Fourier transform of a photoelectron energy distribution observed along the polarization direction of an intense ultrafast light pulse. The approach exploits the scattering of a broadband wave packet created by strong-field tunnel ionization to self-interrogate the molecular structure with picometre spatial resolution and bond specificity. With its inherent femtosecond resolution, combining our technique with molecular alignment can, in principle, provide the basis for time-resolved tomography for multi-dimensional transient structural determination.

15.
J Phys Chem A ; 118(51): 11852-70, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25054866

ABSTRACT

Recently we published [ Liu et al. J. Chem. Phys. 2013 , 139 , 154312 ] an analysis of the rotational structure of the B̃-X̃ origin band spectrum of isopropoxy, which confirmed that the double methyl substitution of methoxy to yield the isopropoxy radical only slightly lifted the degeneracy of the former's X̃(2)E state. Additionally the spectral results provided considerable insight into the relativistic and nonrelativistic contributions to the experimental splitting between the components of the (2)E state. However, left unexplained was how the Jahn-Teller (JT) vibronic coupling terms within methoxy's (2)E state manifest themselves as pseudo-Jahn-Teller (pJT) vibronic coupling between the Ã(2)A″ and X̃(2)A' levels of isopropoxy. To cast additional light on this subject we have obtained new isopropoxy spectra and assigned a number of weak, "forbidden" vibronic transitions in the B̃-X̃ spectrum using new electronic structure calculations and rotational contour analyses. The mechanisms that provide the nonzero probability for these transitions shed considerable information on pJT, spin-orbit, and Coriolis coupling between the à and X̃ states. We also report a novel mechanism caused by pJT coupling that yields excitation probability to the B̃ state dependent upon the permanent dipole moments in the B̃ and à or X̃ states. By combining a new B̃-à and the earlier B̃-X̃ rotational analyses we determine a much improved value for the experimental Ã-X̃ separation.

16.
J Phys Chem A ; 118(51): 11871-90, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25054559

ABSTRACT

The rotational structure of the previously observed B̃(2)A' ← X̃(2)A″ and B̃(2)A' ← Ã(2)A' laser-induced fluorescence spectra of jet-cooled cyclohexoxy radical (c-C6H11O) [ Zu, L.; Liu, J.; Tarczay, G.; Dupré, P; Miller, T. A. Jet-cooled laser spectroscopy of the cyclohexoxy radical. J. Chem. Phys. 2004 , 120 , 10579 ] has been analyzed and simulated using a spectroscopic model that includes the coupling between the nearly degenerate X̃ and à states separated by ΔE. The rotational and fine structure of these two states is reproduced by a 2-fold model using one set of molecular constants including rotational constants, spin-rotation constants (ε's), the Coriolis constant (Aζt), the quenched spin-orbit constant (aζed), and the vibronic energy separation between the two states (ΔE0). The energy level structure of both states can also be reproduced using an isolated-state asymmetric top model with rotational constants and effective spin-rotation constants (ε's) and without involving Coriolis and spin-orbit constants. However, the spin-orbit interaction introduces transitions that have no intensity using the isolated-state model but appear in the observed spectra. The line intensities are well simulated using the 2-fold model with an out-of-plane (b-) transition dipole moment for the B̃ ← X̃ transitions and in-plane (a and c) transition dipole moment for the B̃ ← à transitions, requiring the symmetry for the X̃ (Ã) state to be A″ (A'), which is consistent with a previous determination and opposite to that of isopropoxy, the smallest secondary alkoxy radical. The experimentally determined Ã-X̃ separation and the energy level ordering of these two states with different (A' and A″) symmetries are consistent with quantum chemical calculations. The 2-fold model also enables the independent determination of the two contributions to the Ã-X̃ separation: the relativistic spin-orbit interaction (magnetic effect) and the nonrelativistic vibronic separation between the lowest vibrational energy levels of these two states due to both electrostatic interaction (Coulombic effect) and difference in zero-point energies (kinetic effect).

17.
J Phys Chem A ; 118(2): 404-16, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24392709

ABSTRACT

We report a study of the unimolecular dissociation of BrCH2CH2O radicals produced from the photodissociation of BrCH2CH2ONO at 351/355 nm. Using both a crossed laser-molecular beam scattering apparatus with electron bombardment detection and a velocity map imaging apparatus with tunable VUV photoionization detection, we investigate the initial photodissociation channels of the BrCH2CH2ONO precursor and the subsequent dissociation of the vibrationally excited BrCH2CH2O radicals. The only photodissociation channel of the precursor we detected upon photodissociation at 351 nm was O-NO bond fission. C-Br photofission and HBr photoelimination do not compete significantly with O-NO photofission at this excitation wavelength. The measured O-NO photofission recoil kinetic energy distribution peaks near 14 kcal/mol and extends from 5 to 24 kcal/mol. There is also a small signal from lower kinetic energy NO product (it would be 6% of the total if it were also from O-NO photofission). We use the O-NO photofission P(ET) peaking near 14 kcal/mol to help characterize the internal energy distribution in the nascent ground electronic state BrCH2CH2O radicals. At 351 nm, some but not all of the BrCH2CH2O radicals are formed with enough internal energy to unimolecularly dissociate to CH2Br + H2CO. Although the signal at m/e = 93 (CH2Br(+)) obtained with electron bombardment detection includes signal both from the CH2Br product and from dissociative ionization of the energetically stable BrCH2CH2O radicals, we were able to isolate the signal from CH2Br product alone using tunable VUV photoionization detection at 8.78 eV. We also sought to investigate the source of vinoxy radicals detected in spectroscopic experiments by Miller and co-workers ( J. Phys. Chem. A 2012 , 116 , 12032 ) from the photodissociation of BrCH2CH2ONO at 351 nm. Using velocity map imaging and photodissociating the precursor at 355 nm, we detected a tiny signal at m/e = 43 and a larger signal at m/e = 15 that we tentatively assign to vinoxy. An underlying signal in the time-of-flight spectra at m/e = 29 and m/e = 42, the two strongest peaks in the literature electron bombardment mass spectrum of vinoxy, is also apparent. Comparison of those signal strengths with the signal at HBr(+), however, shows that the vinoxy product does not have HBr as a cofragment, so the prior suggestion by Miller and co-workers that the vinoxy might result from a roaming mechanism is contraindicated.

18.
J Phys Chem A ; 117(50): 13209-15, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24354551
19.
J Chem Phys ; 139(9): 094201, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-24028110

ABSTRACT

We report on the design of a time-resolved, high duty-factor cavity ring-down apparatus utilizing a continuous laser and detail a technique for the accurate and precise measurement of effective reaction rate constants with it. This report complements an earlier paper concerning the measurement of the absolute absorption cross-sections, σP, of reactive intermediates. To demonstrate the performance of the new technique, we have measured the decay rate of ethyl peroxy radicals by monitoring the Ã←X̃ origin band of the G-conformer of these species. A measured value kobs∕σP = 1.827(45) × 10(7) cm/s was determined and it, along with the previously measured value of σP, was used to derive the value of kobs = 9.66(44)×10(-14) cm(3)/s, for the effective rate constant for ethyl peroxy self-reaction (all uncertainties are 1 σ). The present value of kobs is compared to those previously reported, and sources of systematic errors and their impact are discussed.

20.
J Chem Phys ; 139(9): 094308, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-24028118

ABSTRACT

The B̃-X̃ laser-induced-fluorescence spectrum of jet-cooled isopropoxy radical (i-C3H7O[middle dot]) has been recorded. Using an isolated state model the observed rotational and fine structure of the origin band has been well simulated to determine rotational constants for both the X̃ and B̃ states and the electron spin-rotation constants of the X̃ state. The line intensities are well simulated with a parallel transition type, requiring the same symmetry for the levels involved of each the X̃ and B̃ state, which confirms the previous suggestion that going from ethoxy (C2H5O[middle dot]) to isopropoxy, the energy ordering of the electron configurations with in- and out-of-plane half-filled p-orbitals of the oxygen atom is reversed and the ground vibronic symmetry changes from a" to a'. However, the observed spin-rotation coupling constants are not consistent with their predication from either semi-empirical theory or quantum chemical calculations. Additionally, the lack of observed transitions involving the out-of-plane transition moment component is not consistent with high level electronic structure calculations suggesting mixing of vibronic levels by strong spin-orbit coupling. A new twofold model has been developed that explicitly includes Coriolis and spin-orbit coupling between different vibronic levels. This model renders the discrepancy between theoretical and experimental spin-rotation constants moot. Moreover, it determines independently the contributions to the observed splitting between the lowest two levels, resulting from non-relativistic kinetic and Coulombic effects, and that due to the relativistic spin-orbit interaction. The experimental values show that these effects are comparable, but that the vibronic one is slightly more important. This result is at variance with state-of-the-art electronic structure calculations which otherwise do a remarkably good job of describing the ground state of isopropoxy.

SELECTION OF CITATIONS
SEARCH DETAIL
...