Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 208: 111090, 2020 07.
Article in English | MEDLINE | ID: mdl-32389890

ABSTRACT

Interactions of three Ru(II) chlorophenyl terpyridine complexes: [Ru(Cl-Ph-tpy)(en)Cl]Cl (1), [Ru(Cl-Ph-tpy)(dach)Cl]Cl (2) and [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) (Cl-Ph-tpy = 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine, en = 1,2-diaminoethane, dach = 1,2-diaminocyclohexane, bpy = 2,2'-bipyridine) with human serum albumin (HSA), calf thymus DNA and a double-helical oligonucleotide d(CGCGAATTCGCG)2 (1BNA) were examined. Fluorescence emission studies were used to assess the interactions of complexes with HSA, which were of moderate strength for 1 and 2. Molecular docking allowed us to predict mostly π-π stacking and van der Waals interactions between the complexes and the protein. We suggest that the complexes bind to a novel site on HSA, which is different from its druggable sites I, II or III. We suggest a partial intercalation of complexes through the minor groove as a possible mode of interaction with double-helical DNA. Finally, when applied to normal extravillous cell line HTR8/SVneo and JAr choriocarcinoma cell line, complexes 1 and 2 exerted anti-adhesive properties at very low doses, whereas complex 3 had a negligible effect. The obtained results are completion of our studies of Ru(II) terpyridyl complexes that carry N-N ancillary ligands. We suggest a new research direction towards studying the cellular effects of Ru(II) polypyridyl compounds.


Subject(s)
Coordination Complexes , DNA/chemistry , Pyrimidines , Ruthenium , Serum Albumin, Human/chemistry , Cell Adhesion/drug effects , Cell Line , Computer Simulation , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Pyrimidines/chemistry , Pyrimidines/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology
2.
Inorg Chem ; 58(1): 307-319, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30565467

ABSTRACT

Two novel rhodium(III) complexes, namely, [RhIII(X)Cl3] (X = 2 2,6-bis((4 S,7 R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-1 H-4,7-methanoindazol-3-yl)pyridine or 2,6-bis((4 S,7 R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1 H-4,7-methanoindazol-3-yl)pyridine), were synthesized from camphor derivatives of a bis(pyrazolylpyridine), tridentate nitrogen-donor chelate system, giving [RhIII(H2L*)Cl3] (1a) and [RhIII(Me2L*)Cl3] (1b). A rhodium(III) terpyridine (terpy) ligand complex, [RhIII(terpy)Cl3] (1c), was also synthesized. By single-crystal X-ray analysis, 1b crystallizes in an orthorhombic P212121 system, with two molecules in the asymmetric unit. Tridentate coordination by the N,N,N-donor localizes the central nitrogen atom close to the rhodium(III) center. Compounds 1a and 1b were reactive toward l-methionine (l-Met), guanosine-5'-monophosphate (5'-GMP), and glutathione (GSH), with an order of reactivity of 5'-GMP > GSH > l-Met. The order of reactivity of the RhIII complexes was: 1b> 1a > 1c. The RhIII complexes showed affinity for calf thymus DNA and bovine serum albumin by UV-vis and emission spectral studies. Furthermore, 1b showed significant in vitro cytotoxicity against human epithelial colorectal carcinoma cells. Since the RhIII complexes have similar coordination modes, stability differences were evaluated by density functional theory (DFT) calculations (B3LYP(CPCM)/LANL2DZp). With (H2L*) and (terpy) as model ligands, DFT calculations suggest that both tridentate ligand systems have similar stability. In addition, molecular docking suggests that all test compounds have affinity for the minor groove of DNA, while 1b and 1c have potential for DNA intercalation.


Subject(s)
Camphor/analogs & derivatives , Camphor/pharmacology , Coordination Complexes/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Rhodium/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Camphor/chemical synthesis , Camphor/chemistry , Cattle , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , DNA/chemistry , Density Functional Theory , HCT116 Cells , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Kinetics , Ligands , Models, Chemical , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Serum Albumin, Bovine/chemistry
3.
Dalton Trans ; 46(7): 2360-2369, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28139789

ABSTRACT

In this study, we investigated the ability of Ru(ii) polypyridyl complexes to act as DNA binders. The substitution reactions of three Ru(ii) chlorophenyl terpyridine complexes, i.e. [Ru(Cl-Ph-tpy)(en)Cl]Cl (1), [Ru(Cl-Ph-tpy)(dach)Cl]Cl (2) and [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) (Cl-Ph-tpy = 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine, en = 1,2-diaminoethane, dach = 1,2-diaminocyclohexane, bpy = 2,2'-bipyridine), with a mononucleotide guanosine-5'-monophosphate (5'-GMP) and oligonucleotides such as fully complementary 15-mer and 22-mer duplexes with a centrally located GG-binding site for DNA, and fully complementary 13-mer duplexes with a centrally located GG-binding site for RNA were studied quantitatively by UV-Vis spectroscopy. Duplex RNA reacts faster with complexes 1-3 than duplex DNA, while shorter duplex DNA (15mer GG) reacts faster compared with 22mer GG duplex DNA. The measured enthalpies and entropies of activation (ΔH≠ > 0, ΔS≠ < 0) support an associative mechanism for the substitution process. 1H NMR spectroscopy studies performed on complex 3 demonstrated that after the hydrolysis of the Cl ligand, it is capable to interact with guanine derivatives (i.e., 9-methylguanine (9MeG) and 5'-GMP) through N7, forming monofunctional adducts. The molecular structure of the cationic compound [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) was determined in the solid state by X-ray crystallography. The interactions of 1-3 with calf thymus (CT) and herring testes (HT) DNA were examined by stopped-flow spectroscopy, in which HT DNA was sensibly more reactive than CT DNA. The reactivity towards the formation of Ru-DNA adducts was also revealed by a gel mobility shift assay, showing that complexes 1 and 2 have a stronger DNA unwinding ability compared to complex 3. Overall, the complexes with bidentate aliphatic diamines proved to be superior to those with bpy in terms of capability to bind to the here studied biomolecules.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Ruthenium/chemistry , A549 Cells , Animals , Base Sequence , Cattle , DNA/genetics , Guanine/chemistry , HeLa Cells , Humans , Kinetics
4.
J Inorg Biochem ; 169: 1-12, 2017 04.
Article in English | MEDLINE | ID: mdl-28088012

ABSTRACT

In this study, we have developed a series of new monofunctional Ru(II) complexes of the general formula mer-[Ru(Cl-Ph-tpy)(N-N)Cl]Cl in which Cl-Ph-tpy is 4'-(4-chlorophenyl)-2,2':6',2″-terpyridine, N-N is a bidentate chelating ligand (1,2-diaminoethane (en, 1), 1,2-diaminocyclohexane (dach, 2) or 2,2'-bipyridine (bpy, 3)). All complexes were fully characterized by elemental analysis and spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR). Their chemical behavior in aqueous solution was studied by UV-Vis and NMR spectroscopy showing that all compounds are relatively labile leading to the formation of the corresponding aqua species 1aq-3aq. Their DNA binding ability was evaluated by UV-Vis spectroscopy, fluorescence quenching measurements and viscosity measurements. Competitive studies with ethidium bromide (EB) showed that the complexes can displace DNA-bound EB, suggesting strong competition with EB (Ksv=1.1-2.7×104M-1). These experiments show that the ruthenium complexes interact with DNA via intercalation. The complexes bind to serum protein albumin displaying relatively high binding constants (Ksv=104-105M-1). Compound 3 displayed from high to moderate cytotoxicity against two cancer cell lines HeLa and A549 (with IC50ca. 12.7µM and 53.8µM, respectively), while complexes 1 and 2 showed only moderate cytotoxicity (with IC50ca. 84.8µM and 96.3µM, respectively) against HeLa cells. The cell cycle analysis (by flow cytometry) of HeLa and A549 cells treated with complex 3 shows minor changes on the cell cycle phase distribution.


Subject(s)
DNA/metabolism , Intercalating Agents/chemistry , Intercalating Agents/chemical synthesis , Ruthenium Compounds/chemistry , Ruthenium Compounds/chemical synthesis , Ruthenium/chemistry , Serum Albumin, Bovine/metabolism , A549 Cells , Animals , Cattle , Cell Cycle/drug effects , Cell Survival/drug effects , DNA/chemistry , HeLa Cells , Humans , Intercalating Agents/adverse effects , Protein Binding , Ruthenium Compounds/adverse effects , Serum Albumin, Bovine/chemistry
5.
Dalton Trans ; 45(39): 15481-15491, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27722449

ABSTRACT

A novel rhodium(iii) complex [RhIII(H2LtBu)Cl3] (1) (H2LtBu = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine) containing a pincer type, tridentate nitrogen-donor chelate system was synthesized. Single crystal X-ray structure analysis revealed that 1 crystallizes in the orthorhombic space group Pbcn with a = 20.7982(6), b = 10.8952(4), c = 10.9832(4) Å, V = 2488.80(15) Å3, and eight molecules in the unit cell. The rhodium center in the complex [RhIII(H2LtBu)Cl3] (1) is coordinated in a slightly distorted octahedral geometry by the tridentate N,N,N-donor and three chloro ligands, adopting a mer arrangement with an essentially planar ligand skeleton. Due to the tridentate coordination of the N,N,N-donor, the central nitrogen atom N1 is located closer to the RhIII center. The reactivity of the synthesized complex toward small biomolecules (l-methionine (l-Met), guanosine-5'-monophosphate (5'-GMP), l-histidine (l-His) and glutathione (GSH)) and to a series of duplex DNAs and RNA was investigated. The order of reactivity of the studied small biomolecules is: 5'-GMP > GSH > l-Met > l-His. Duplex RNA reacts faster with the [RhIII(H2LtBu)Cl3] complex than duplex DNA, while shorter duplex DNA (15mer GG) reacts faster compared with 22mer GG duplex DNA. In addition, a higher reactivity is achieved with a DNA duplex with a centrally located GG-sequence than with a 22GTG duplex DNA, in which the GG-sequence is separated by a T base. Furthermore, the interaction of this metal complex 1 with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) was examined by absorption (UV-Vis) and emission spectral studies (EthBr displacement studies). Overall, the studied complex exhibited good DNA and BSA interaction ability.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Rhodium/chemistry , Crystallography, X-Ray , DNA/chemistry , Glutathione/chemistry , Guanosine Monophosphate/chemistry , Histidine/chemistry , Kinetics , Ligands , Methionine/chemistry , Models, Molecular , Molecular Structure , Protein Binding , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...