Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 9(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804204

ABSTRACT

In non-small cell lung cancer (NSCLC), stroma-resident and tumour-infiltrating macrophages may facilitate an immunosuppressive tumour microenvironment (TME) and hamper immunotherapeutic responses. Analysis of tumour-associated macrophage (TAM) plasticity in NSCLC is largely lacking. We established a novel, multi-marker, dual analysis approach for assessing monocyte-derived macrophage (Mφ) polarisation and M1/M2 phenotypic plasticity. We developed a flow cytometry-based, two-marker analysis (CD64 and CD206) of CD14+ cells. The phenotype and immune function of in vitro-induced TAMs was studied in a heterotypic spheroid and tumour-derived explant model of NSCLC. Heterotypic spheroids and NSCLC explants skewed Mφs from an M1- (CD206loCD64hi) to M2-like (CD206hiCD64lo) phenotype. Lipopolysaccharide (LPS) and IFNγ treatment reversed M2-like Mφ polarisation, indicating the plasticity of Mφs. Importantly, antigen-specific CD8+ T cell responses were reduced in the presence of tumour explant-conditioned Mφs, but not spheroid-conditioned Mφs, suggesting explants are likely a more relevant model of the immune TME than cell line-derived spheroids. Our data indicates the importance of multi-marker, functional analyses within Mφ subsets and the advantages of the ex vivo NSCLC explant model in immunomodulation studies. We highlight the plasticity of the M1/M2 phenotype using the explant model and provide a tool for studying therapeutic interventions designed to reprogram M2-like Mφ-induced immunosuppression.

2.
J Clin Invest ; 129(9): 3640-3656, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31162141

ABSTRACT

Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , RNA Interference/immunology , Signal Transduction , T-Lymphocytes, Regulatory , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/immunology , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/immunology , Mice , Mice, Transgenic , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
3.
Front Immunol ; 10: 889, 2019.
Article in English | MEDLINE | ID: mdl-31068951

ABSTRACT

Regulatory T cells (Tregs) can control excessive or undesirable immune responses toward autoantigens, alloantigens, and pathogens. In transplantation, host immune responses against the allograft are suppressed through the use of immunosuppressive drugs, however this often results in life-threatening side effects including nephrotoxicity and an increased incidence of cancer and opportunistic infections. Tregs can control graft-vs.-host disease and transplant rejection in experimental models, providing impetus for the use of Tregs as a cellular therapy in clinical transplantation. One of the major barriers to the widespread use of Treg cellular therapy is the requirement to expand cells ex vivo to large numbers in order to alter the overall balance between regulatory and effector cells. Methods that enhance suppressive capacity thereby reducing the need for expansion are therefore of interest. Here, we have compared the function of freshly-isolated and ex vivo-manipulated human Tregs in a pre-clinical humanized mouse model of skin transplantation. Sorted human CD127loCD25+CD4+ Tregs were assessed in three different conditions: freshly-isolated, following transient in vitro activation with antiCD3/antiCD28 beads or after ex vivo-expansion for 2 weeks in the presence of antiCD3/antiCD28 beads and recombinant human IL2. While ex vivo-expansion of human Tregs increased their suppressive function moderately, transient in vitro-activation of freshly isolated Tregs resulted in a powerful enhancement of Treg activity sufficient to promote long-term graft survival of all transplants in vivo. In order to investigate the mechanisms responsible for these effects, we measured the expression of Treg-associated markers and susceptibility to apoptosis in activated Tregs. Transiently activated Tregs displayed enhanced survival and proliferation in vitro and in vivo. On a molecular level, Treg activation resulted in an increased expression of anti-apoptotic BCL2L1 (encoding BCL-XL) which may be at least partially responsible for the observed enhancement in function. Our results suggest that in vitro activation of human Tregs arms them with superior proliferative and survival abilities, enabling them to more effectively control alloresponses. Importantly, this transient activation results in a rapid functional enhancement of freshly-isolated Tregs, thereby providing an opportunity to eliminate the need for in vitro expansion in select circumstances. A protocol employing this technique would therefore benefit from a reduced requirement for large cell numbers for effective therapy.


Subject(s)
Gene Expression Regulation , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , bcl-X Protein/genetics , Animals , Apoptosis/genetics , Apoptosis/immunology , Biomarkers , Cell Survival/genetics , Cell Survival/immunology , Humans , Immune Tolerance , Immunomodulation , Immunophenotyping , Mice , Mice, Knockout , Skin Transplantation , bcl-X Protein/metabolism
4.
Methods Mol Biol ; 1899: 43-54, 2019.
Article in English | MEDLINE | ID: mdl-30649764

ABSTRACT

Regulatory T cells (Tregs) are a population of lymphocytes that exerts suppressive effects upon the immune system. In human peripheral blood, the major population of T lymphocytes with suppressive capacity are defined by expression of the T cell co-receptor CD4 and the interleukin-2 receptor α-chain (CD25), combined with minimal expression of the interleukin-7 receptor α subunit (CD127). We begin by outlining the method for isolating peripheral blood mononuclear cells (PBMCs) from human blood by centrifugation of whole blood overlayed on a hydrophilic polysaccharide, with an additional erythrocyte lysis step. The protocol that follows utilizes Fluorescence-Activated Cell Sorting (FACS) for the isolation of this CD4+CD25+CD127lo population of regulatory T cells, with high yield and purity, from immunostained PBMCs. Prior to FACS isolation, this protocol exploits magnetic immunoselection for pre-enrichment of CD25+ PBMC, which reduces the duration of the subsequent FACS isolation.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , T-Lymphocytes, Regulatory/cytology , CD4 Antigens/genetics , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-7 Receptor alpha Subunit/genetics , Leukocytes, Mononuclear/cytology , Lymphocyte Count , T-Lymphocytes, Regulatory/immunology
5.
Immunol Lett ; 190: 139-147, 2017 10.
Article in English | MEDLINE | ID: mdl-28823885

ABSTRACT

Adoptive cellular therapies are gaining popularity as a means to treat clinical conditions, with potentially fewer risks and greater efficacy than traditional pharmacological strategies. Regulatory T cells (Tregs) are currently undergoing clinical trials in various immune-mediated pathologies, including transplant rejection and autoimmune conditions. In general, cell therapy relies upon ex vivo expansion of the cell product, in order to administer more cells than can be isolated from one person. In vitro manipulation of cell therapy products, prior to administration to patients, offers the opportunity to enhance the efficacy of the final cell therapy product in other ways. For example, cells can be exposed to reagents that enhance their longevity or functional potency after transfer into the patient. Genetic modification strategies can even permit the design of cells with bespoke functionality. Crucially, in vitro manipulation of therapeutic cells in isolation can exert these influences upon the biology of the therapeutic cells, without systemic exposure of the patient to the reagents being used. Quality control assessments can be integrated into the procedure prior to administration, to protect the patient from the risk of adverse events, should the procedure produce undesirable results. With a particular focus on Tregs, this review surveys the diverse strategies that are being employed to enhance the efficacy of cell therapy via in vitro manipulation of cells, and highlights some emerging technologies that may propel this endeavour in the future.


Subject(s)
Autoimmune Diseases/immunology , Graft Rejection/immunology , Immunotherapy, Adoptive/methods , Cell Culture Techniques , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation
6.
Transplantation ; 95(1): 85-93, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23263503

ABSTRACT

BACKGROUND: Regulatory T cells (Treg) are potentially a useful therapeutic option for the treatment of immunopathological conditions including graft-versus-host disease. Umbilical cord blood (UCB) offers certain advantages over adult peripheral blood (APB) as a source of Treg for cellular therapy but yields far fewer Treg per unit. Pooling of Treg from multiple donors may overcome this challenge. METHODS: In this study, we assessed the in vitro and in vivo efficacy of multiple donor pooled UCB or APB-derived Treg. RESULTS: In vitro, pooled freshly isolated UCB-derived Treg were as suppressive as APB-derived Treg. However, in a mouse model of human skin allodestruction, pooled UCB-derived Treg were more potent at suppressing alloresponses and prolonging skin survival compared with pooled APB-derived Treg. Improved survival of UCB Treg in an in vivo cell survival assay and their lower expression of human leukocyte antigen-ABC suggested that lower immunogenicity may account for their superior efficacy in vivo. CONCLUSION: Multiple-unit UCB is therefore a viable source of human Treg for cellular therapy, and pooling of Treg from multiple donors offers a useful strategy for achieving required therapeutic doses.


Subject(s)
Fetal Blood/cytology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Cell Survival , Humans , Immunophenotyping , Leukocyte Common Antigens/analysis , Mice , Mice, Inbred BALB C
7.
PLoS One ; 7(12): e53331, 2012.
Article in English | MEDLINE | ID: mdl-23300911

ABSTRACT

Regulatory T cell (Treg) therapy for immune modulation is a promising therapeutic strategy for the treatment and prevention of autoimmune disease and graft-versus-host disease (GvHD) after bone marrow transplantation. However, Treg are heterogeneous and express a variety of chemokine receptor molecules. The optimal subpopulation of Treg for therapeutic use may vary according to the pathological target. Indeed, clinical trials of Treg for the prevention of GvHD where the skin is a major target of the anti-host response have employed Treg derived from a variety of different sources. We postulated that for the effective treatment of GvHD-related skin pathology, Treg must be able to migrate to skin in order to regulate local alloimmune responses efficiently. To test the hypothesis that different populations of Treg display distinct efficacy in vivo based on their expression of tissue-specific homing molecules, we evaluated the activity of human Treg derived from two disparate sources in a model of human skin transplantation. Treg were derived from adult blood or cord blood and expanded in vitro. While Treg from both sources displayed similar in vitro suppressive efficacy, they exhibited marked differences in the expression of skin homing molecules. Importantly, only adult-derived Treg were able to prevent alloimmune-mediated human skin destruction in vivo, by virtue of their improved migration to skin. The presence of Treg within the skin was sufficient to prevent its alloimmune-mediated destruction. Additionally, Treg expressing the skin homing cutaneous lymphocyte antigen (CLA) were more efficient at preventing skin destruction than their CLA-deficient counterparts. Our findings highlight the importance of the careful selection of an effective subpopulation of Treg for clinical use according to the pathology of interest.


Subject(s)
Autoimmune Diseases/therapy , Cell Movement/immunology , Graft vs Host Disease/prevention & control , Skin/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cell- and Tissue-Based Therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Humans , Mice , Mice, Inbred BALB C , Skin/pathology
8.
Proc Natl Acad Sci U S A ; 108(51): 20672-7, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22135454

ABSTRACT

Variation in food quality and abundance requires animals to decide whether to stay on a poor food patch or leave in search of better food. An important question in behavioral ecology asks when is it optimal for an animal to leave a food patch it is depleting. Although optimal foraging is central to evolutionary success, the neural and molecular mechanisms underlying it are poorly understood. Here we investigate the neuronal basis for adaptive food-leaving behavior in response to resource depletion in Caenorhabditis elegans, and identify several of the signaling pathways involved. The ASE neurons, previously implicated in salt chemoattraction, promote food-leaving behavior via a cGMP pathway as food becomes limited. High ambient O(2) promotes food-leaving via the O(2)-sensing neurons AQR, PQR, and URX. Ectopic activation of these neurons using channelrhodopsin is sufficient to induce high food-leaving behavior. In contrast, the neuropeptide receptor NPR-1, which regulates social behavior on food, acts in the ASE neurons, the nociceptive ASH neurons, and in the RMG interneuron to repress food-leaving. Finally, we show that neuroendocrine signaling by TGF-ß/DAF-7 and neuronal insulin signaling are necessary for adaptive food-leaving behavior. We suggest that animals integrate information about their nutritional state with ambient oxygen and gustatory stimuli to formulate optimal foraging strategies.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Feeding Behavior , Animals , Behavior, Animal , Caenorhabditis elegans Proteins/genetics , Carbon Dioxide/chemistry , Chemotaxis , Cyclic GMP/metabolism , Decision Making , Insulin/metabolism , Neurons/metabolism , Neuropeptides/chemistry , Oxygen/chemistry , Oxygen/metabolism , Rhodopsin/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...