Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 8664, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32457317

ABSTRACT

The ω-phase formation and its collapsed structures in metastable ß-type Ti-Mo alloys were illustrated by first-principles calculations and experimental evidence of a partially collapsed ω-phase in the nano-scale Mo-depleted region under a rapid cooling via high-angle annular dark-field scanning transmission electron microscopy. The ease of ω-phase formation within -Mo-Ti-Mo- poor cluster structure was not only due to the low energy barrier in the collapse pathway, which was caused by the reduced lattice distortion, but also due to the softening of the shear modulus (G111) as a result of the small charge density difference. The most stable collapsed structure of the ω-phase strongly depended on the minimum stacking fault energy among different collapse degrees in accordance to the smallest charge density difference. Therefore, the concurrent compositional and structural instabilities of the ω-phase was attributed to the coupling effect of the cluster structure with stacking fault from the atomic and electronic basis.

2.
Sci Technol Adv Mater ; 20(1): 401-411, 2019.
Article in English | MEDLINE | ID: mdl-31105803

ABSTRACT

Deformation microstructure of orthorhombic-α" martensite in a Ti-7.5Mo (wt.%) alloy was investigated by tracking a local area of microstructure using scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. The as-quenched α" plates contain {111}α"-type I transformation twins generated to accommodate transformation strain from bcc-ß to orthorhombic-α" martensite. Tensile deformation up to strain level of 5% induces {112}α"-type I deformation twins. The activation of {112}α"-type I deformation twinning mode is reported for the first time in α" martensite in ß-Ti alloys. {112}α"-type I twinning mode was analyzed by the crystallographic twinning theory by Bilby and Crocker and the most possible mechanism of atomic displacements (shears and shuffles) controlling the newly reported {112}α"-type I twinning were proposed.

3.
Mater Sci Eng C Mater Biol Appl ; 94: 811-820, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30423767

ABSTRACT

The effect of annealing condition on microstructure, mechanical properties and springback behaviour was examined in the connection rod of Ti-6Al-4V alloy for spinal fixation devices. Compared with the deformed microstructure in the sample before annealing, relatively few equiaxed grains were present after annealing at 1003 K after 1.8 ks, and a considerable amount appeared at 7.2 ks. When annealing time was extended to 36 ks, the recrystallised grains further grew. Vickers hardness, tensile strength and bending strength decreased with increasing annealing time, whereas the elastic and bending moduli showed no significant change with annealing time of up to 7.2 ks and then slightly decreased at 36 ks. The springback ratio was closely associated with strength and modulus and applied bending deflection. The springback ratio reached the highest and lowest values in the sample before and after annealing for 7.2 ks, respectively. A good combination of strength, modulus and springback ratio was obtained in the sample after annealing for 7.2 ks.


Subject(s)
Materials Testing , Orthopedic Fixation Devices , Spine/surgery , Titanium/chemistry , Alloys , Hardness , Tensile Strength
4.
Sci Technol Adv Mater ; 17(1): 220-228, 2016.
Article in English | MEDLINE | ID: mdl-27877872

ABSTRACT

We have investigated the propagation of {332}<113> twins in a multilayered Ti-10Mo-xFe (x = 1-3) alloy fabricated by multi-pass hot rolling. The material contains a macroscopic Fe-graded structure (about 130 µm width) between 1 and 3 wt% Fe in the direction perpendicular to rolling. We observe strong influence of the Fe-graded structure in the twin propagation behavior. The propagation of {332}<113> twins that are nucleated in Fe-lean regions (~1 wt% Fe) is interrupted in the grain interiors at a specific Fe content, namely, about 2 wt% Fe. We ascribe this effect to the role of Fe content in solid solution on the stress for twin propagation. The interruption of twins in the grain interiors results in the development of characteristic dislocation configurations such as highly dense dislocation walls (HDDWs) associated to strain localization phenomena. The nucleation and propagation of these dislocation configurations is ascribed to the underlying plastic accommodation mechanisms of the stress field at the twin tips. We find that the crystallographic alignment of HDDWs is determined by the stress field at the twin tips and the deformation texture. The excellent plastic accommodation at the interrupted twin tips allows attaining the good ductility of the present material (total elongation of 28%).

5.
Environ Sci Pollut Res Int ; 22(22): 17683-90, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26154035

ABSTRACT

The leaching behaviour of Sn and Pb elements from eutectic SnPb solder of electronic waste in acidic soil was investigated through acidification with HCl-H2SO4 solution and compared with saline solution. The amounts of Sn and Pb elements leached, when subjected to acidic soil, are higher than those with saline soil. Evidence for the significantly preferential release of Sn into the leachate is provided; the galvanic couple accelerated such preferential release. Surface product analysis reveals the slight damage of SnPb in saline soil. Serious dissolution due to electrochemical reaction and a thick, porous PbSO4 surface layer are observed in acidified soil, suggesting more severe toxicity potential of Pb in soil rather than in water.


Subject(s)
Lead/analysis , Soil Pollutants/analysis , Tin/analysis , Electronic Waste/analysis , Risk Assessment , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL