Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 37(16): 2245-2249, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33624746

ABSTRACT

MOTIVATION: Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with human traits and diseases, but the exact causal genes are largely unknown. Common genetic risk variants are enriched in non-protein-coding regions of the genome and often affect gene expression (expression quantitative trait loci, eQTL) in a tissue-specific manner. To address this challenge, we developed a methodological framework, E-MAGMA, which converts genome-wide association summary statistics into gene-level statistics by assigning risk variants to their putative genes based on tissue-specific eQTL information. RESULTS: We compared E-MAGMA to three eQTL informed gene-based approaches using simulated phenotype data. Phenotypes were simulated based on eQTL reference data using GCTA for all genes with at least one eQTL at chromosome 1. We performed 10 simulations per gene. The eQTL-h2 (i.e. the proportion of variation explained by the eQTLs) was set at 1%, 2% and 5%. We found E-MAGMA outperforms other gene-based approaches across a range of simulated parameters (e.g. the number of identified causal genes). When applied to genome-wide association summary statistics for five neuropsychiatric disorders, E-MAGMA identified more putative candidate causal genes compared to other eQTL-based approaches. By integrating tissue-specific eQTL information, these results show E-MAGMA will help to identify novel candidate causal genes from genome-wide association summary statistics and thereby improve the understanding of the biological basis of complex disorders. AVAILABILITY AND IMPLEMENTATION: A tutorial and input files are made available in a github repository: https://github.com/eskederks/eMAGMA-tutorial. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
Twin Res Hum Genet ; 23(5): 271-277, 2020 10.
Article in English | MEDLINE | ID: mdl-33190678

ABSTRACT

Previous genetic studies on hair morphology focused on the overall morphology of the hair using data collected by self-report or researcher observation. Here, we present the first genome-wide association study (GWAS) of a micro-level quantitative measure of hair curvature. We compare these results to GWAS results obtained using a macro-level classification of observable hair curvature performed in the same sample of twins and siblings of European descent. Observational data were collected by trained observers, while quantitative data were acquired using an Optical Fibre Diameter Analyser (OFDA). The GWAS for both the observational and quantitative measures of hair curvature resulted in genome-wide significant signals at chromosome 1q21.3 close to the trichohyalin (TCHH) gene, previously shown to harbor variants associated with straight hair morphology in Europeans. All genetic variants reaching genome-wide significance for both GWAS (quantitative measure lead single-nucleotide polymorphism [SNP] rs12130862, p = 9.5 × 10-09; observational measure lead SNP rs11803731, p = 2.1 × 10-17) were in moderate to very high linkage disequilibrium (LD) with each other (minimum r2 = .45), indicating they represent the same genetic locus. Conditional analyses confirmed the presence of only one signal associated with each measure at this locus. Results from the quantitative measures reconfirmed the accuracy of observational measures.


Subject(s)
Genome-Wide Association Study , Hair , Polymorphism, Single Nucleotide , Genetic Loci , Humans , Linkage Disequilibrium , White People/genetics
3.
Twin Res Hum Genet ; 20(6): 541-549, 2017 12.
Article in English | MEDLINE | ID: mdl-29110752

ABSTRACT

Acne vulgaris is a skin disease with a multifactorial and complex pathology. While several twin studies have estimated that acne has a heritability of up to 80%, the genomic elements responsible for the origin and pathology of acne are still undiscovered. Here we performed a twin-based structural equation model, using available data on acne severity for an Australian sample of 4,491 twins and their siblings aged from 10 to 24. This study extends by a factor of 3 an earlier analysis of the genetic factors of acne. Acne severity was rated by nurses on a 4-point scale (1 = absent to 4 = severe) on up to three body sites (face, back, chest) and on up to three occasions (age 12, 14, and 16). The phenotype that we analyzed was the most severe rating at any site or age. The polychoric correlation for monozygotic twins was higher (r MZ = 0.86, 95% CI [0.81, 0.90]) than for dizygotic twins (r DZ = 0.42, 95% CI [0.35, 0.47]). A model that includes additive genetic effects and unique environmental effects was the most parsimonious model to explain the genetic variance of acne severity, and the estimated heritability was 0.85 (95% CI [0.82, 0.87]). We then conducted a genome-wide analysis including an additional 271 siblings - for a total of 4,762 individuals. A genome-wide association study (GWAS) scan did not detect loci associated with the severity of acne at the threshold of 5E-08 but suggestive association was found for three SNPs: rs10515088 locus 5q13.1 (p = 3.9E-07), rs12738078 locus 1p35.5 (p = 6.7E-07), and rs117943429 locus 18q21.2 (p = 9.1E-07). The 5q13.1 locus is close to PIK3R1, a gene that has a potential regulatory effect on sebocyte differentiation.


Subject(s)
Acne Vulgaris/genetics , Diseases in Twins/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Acne Vulgaris/epidemiology , Acne Vulgaris/physiopathology , Adolescent , Adult , Australia/epidemiology , Child , Diseases in Twins/epidemiology , Diseases in Twins/physiopathology , Female , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics , Registries , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Young Adult
4.
Ann Bot ; 118(5): 957-969, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27497241

ABSTRACT

Background and Aims Improved understanding of the secondary gene pools of crops is essential for advancing genetic gain in breeding programmes. Common bean, Phaseolus vulgaris, is a staple crop with several wild relatives in its secondary gene pool. The year-long bean, P. dumosus, an important crop in Guatemala, is considered particularly closely related to P. vulgaris and a potential source of novel variation. However, the genetic diversity and relationship to other Phaseolus species of P. dumosus remain unclear. Methods We conducted the first comprehensive investigation of P. dumosus genetic diversity using both nuclear and chloroplast genome markers. Our nuclear marker set included over 700 markers present within the Phaseolus DArT (Diversity Arrays Technology) array, which we applied to P. dumosus and other relatives of P. vulgaris (including every secondary gene pool species: P. acutifolius, P. albescens, P. coccineus and P. costaricensis). Key Results Phaseolus dumosus arose from hybridization of P. vulgaris and P. coccineus, followed by at least two later hybridizations with sympatric congener populations. Existing P. dumosus collections have low genetic diversity. Conclusions The under-utilized crop P. dumosus has a complex hybrid origin. Further sampling in the region in which it arose may uncover additional germplasm for introgressing favourable traits into crops within the P. vulgaris gene pool.

SELECTION OF CITATIONS
SEARCH DETAIL
...