Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Andrology ; 10(1): 179-189, 2022 01.
Article in English | MEDLINE | ID: mdl-34435470

ABSTRACT

BACKGROUND: Testicular torsion, which causes ischemia-reperfusion (IR) injury, is a serious urological emergency that can lead to testicular dysfunction, including infertility, primarily among newborn and pubertal males; thus, effective drugs should be administered during or after ischemia. OBJECTIVES: Using a rat model of testicular IR injury, the present study investigated the protective effects of relaxin (RLN) against oxidative stress, testicular dysfunction, inflammation, histological damage, arrested spermatogenesis, and germ cell apoptosis as well as explored the usefulness of RLN as a potential protective drug for IR injury combined with surgical treatment. MATERIALS AND METHODS: Male Sprague-Dawley rats were subjected to left testicular ischemia for 2 h, followed by 24 h of reperfusion. They were subsequently divided into three groups: sham, IR, and IR + RLN groups. Porcine RLN (500 ng/h) or saline was infused using an implanted osmotic mini-pump 90 min after inducing ischemia. The RLN dose used herein was that which resulted in serum RLN levels comparable to those in mid-pregnant rats based on previous studies. RESULTS: Testicular IR increased germ cell apoptosis and histological damage as well as promoted disorganized and arrested spermatogenesis, accompanied by a significant increase in oxidative stress and inflammation. However, RLN administration ameliorated the adverse consequences associated with IR injury by attenuating oxidative stress and mitigating apoptosis and inflammation. DISCUSSION AND CONCLUSION: The study findings clearly demonstrated that RLN exerts a protective effect against IR-induced testicular injury by attenuating oxidative stress, apoptosis, and inflammation, suggesting that RLN together with surgical treatment is a potentially efficacious approach toward ameliorating testicular dysfunction following testicular torsion.


Subject(s)
Protective Agents/pharmacology , Relaxin/pharmacology , Reperfusion Injury/drug therapy , Spermatic Cord Torsion/drug therapy , Testis/blood supply , Animals , Apoptosis/drug effects , Disease Models, Animal , Male , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Spermatic Cord Torsion/complications , Testicular Diseases/etiology , Testicular Diseases/prevention & control , Testis/drug effects
2.
Andrologia ; 53(11): e14237, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34490648

ABSTRACT

Oxidative stress is an important factor affecting the quality of spermatozoa during liquid storage of boar semen; however, monitoring of reactive oxygen species (ROS) that provides direct insight into the oxidative status is not yet attempted. This study aimed to monitor ROS in boar sperm during liquid semen storage to determine its correlation with sperm motility and free thiol (SH) content, and seasonality. Ejaculate was collected from mature Duroc boars in a commercial farm in autumn and spring, diluted in Mulberry III extender, stored at 15°C, and examined daily for sperm ROS level, SH content and motility. The ROS levels in spermatozoa prepared during autumn and spring were constantly low until days 4 and 5 of storage, respectively, which thereafter progressively increased in association with the loss of sperm motility. The increased sperm ROS level correlated with the higher SH level and lower motility, which was accentuated from day 4 of storage and was higher in September, or early autumn. This study indicates that increased sperm ROS levels during liquid storage results in oxidative damage, causing loss of sperm motility, presumably through decreased sperm viability, suggesting that sperm ROS monitoring effectively evaluates the quality of boar semen.


Subject(s)
Semen Preservation , Sperm Motility , Animals , Male , Reactive Oxygen Species , Semen , Semen Preservation/veterinary , Spermatozoa , Sulfhydryl Compounds , Swine
3.
Cell Tissue Res ; 385(1): 173-189, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33590284

ABSTRACT

Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.


Subject(s)
Corpus Luteum/physiology , Insulin/metabolism , Ovary/physiology , Proteins/metabolism , Animals , Female , Goats , Pregnancy
4.
Basic Clin Androl ; 30: 3, 2020.
Article in English | MEDLINE | ID: mdl-32166037

ABSTRACT

BACKGROUND: Cisplatin (CP) is an extremely effective anticancer agent widely used to treat various cancer types, however, the potential side effects include testicular dysfunction. This study was to investigate, using a rat model of CP-induced testicular dysfunction, the protective effects of relaxin (RLN) against oxidative stress, testicular function, histological damage, spermatogenesis, germ-cell apoptosis, and sperm output, and to explore the usefulness of RLN as a potential protective drug for use with CP in chemotherapeutic treatments. METHODS: Sprague-Dawley male rats were used, which were divided into three groups: sham control, CP, and CP + RLN. Porcine RLN (500 ng/h) or saline was infused for 5 days using an implanted osmotic mini-pump following intraperitoneal injection of CP (6 mg/kg). RLN dose was chosen based on previous studies showing that it resulted in serum relaxin levels comparable to those in rats at the middle of pregnancy. At 5 days after CP administration, samples were collected and assessment of testicular histopathology, germ-cell apoptosis, oxidative stress, lipid peroxidation, and sperm quality was performed as main measures. RESULTS: The testicular CP model showed reduced testis weight and significantly decreased spermatogenesis scores. Additionally, CP administration induced a 4.6-fold increase in the apoptotic index associated with a significant increase in oxidative stress and upregulation of pro-apoptotic Casp3 and downregulation of anti-apoptotic Bcl2 levels, resulting in a marked reduction in sperm concentration. However, RLN administration caused a significant reduction in CP-mediated damage by attenuating oxidative stress and cell apoptosis. RLN administration efficiently scavenged ROS via the activation of SOD, CAT, and GPx and upregulation of GSH to prevent lipid peroxidation and decreased apoptosis by altering Bcl2 and Casp3 expression, thereby reducing histopathological damage and restoring spermatogenesis. Furthermore, RLN ameliorated attenuated sperm motility in the cauda epididymis resulting from CP treatment. CONCLUSIONS: This study clearly indicates that RLN exerts a protective effect against CP-induced testicular damage through attenuation of oxidative stress and suppression of apoptosis. Our findings suggest RLN as a potentially efficacious drug for use with cisplatin chemotherapy in order to ameliorate CP-induced side effects and testicular injury adversely affecting spermatogenesis, sperm quality, and oxidative-stress parameters.


CONTEXTE: Le cis platine (CP) est un agent anticancéreux extrêmement efficace largement utilisé pour traiter divers types de cancer. Parmi les effets secondaires potentiels associés aux traitements par CP on compte le dysfonctionnement des testicules. Le propos de ce manuscrit est d'étudier, à l'aide d'un modèle rat de dysfonctionnement testiculaire induit par la prise de CP, l'action protectrice de la relaxine (RLN) contre les effets délétères dus au CP lesquels incluent le stress oxydant, la perte de fonction testiculaire, les dommages histologiques au testicule, l'apoptose des cellules germinales et la baisse de la qualité des spermatozoïdes. L'objectif est d'explorer l'utilité de la RLN comme médicament protecteur potentiel à utiliser avec le CP dans les traitements chimiothérapeutiques. MÉTHODES: Des rats mâles Sprague-Dawley ont été utilisés. Trois groupes : contrôle, CP, et CP + RLN ont été comparés. Après une injection intrapéritonéale de CP (6mg/kg), de la RLN porcine (500 ng/h) ou du sérum physiologique a été perfusé pendant 5 jours en utilisant une mini-pompe osmotique implantée. La dose de RLN a été choisie en fonction d'études antérieures qui avaient montré qu'elle entraînait des taux sériques de RLN comparables à ceux de rats en milieu de la gestation. Cinq jours après l'administration de la CP, des échantillons ont été prélevés afin d'évaluer l'histopathologie, l'apoptose des cellules germinales, le stress oxydant, la peroxydation des lipides et les paramètres spermatiques. RÉSULTATS: Le groupe CP a montré une réduction du poids des testicules et une diminution significative des scores de spermatogenèse. De plus, l'administration de CP a entraîné une augmentation de l'apoptose de 4,6 fois associée à une augmentation significative du stress oxydant, de la régulation à la hausse de la Caspase 3 pro-apoptotique et à la baisse de Bcl2 anti-apoptotique conduisant in fine à une réduction marquée de la concentration en spermatozoïdes. La RLN a ainsi significativement corrigée les effets négatifs du CP en atténuant le stress oxydant et l'apoptose. La RLN a permis d'éliminer efficacement les ROS via l'activation de la triade enzymatique anti-oxydante superoxyde dismutase (SOD)/catalase (CAT)/glutathion peroxydase (GPx) et via la régulation à la hausse du GSH prévenant ainsi la lipopéroxydation. La RLN a par ailleurs diminué les atteintes histopathologiques testiculaires préservant la spermatogenèse. En parallèle, la RLN a amélioré la mobilité spermatique des spermatozoïdes prélevés dans la queue de l'épididyme. CONCLUSIONS: Cette étude montre clairement que la RLN exerce un effet protecteur contre les lésions testiculaires par l'atténuation du stress oxydant et la suppression de l'apoptose induite par le CP. Nos résultats suggèrent que la RLN est un médicament potentiellement pertinent à utiliser afin de diminuer les effets secondaires induits par le CP sur la fonction testiculaire et sur les spermatozoïdes lors de la chimiothérapie cancéreuse.

5.
Cell Tissue Res ; 362(2): 407-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26017634

ABSTRACT

Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.


Subject(s)
Goats/metabolism , Insulin/metabolism , Leydig Cells/cytology , Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Testis/metabolism , Animals , HEK293 Cells , Humans , Male
6.
Endocrinology ; 156(4): 1523-39, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25562614

ABSTRACT

Relaxin-like factor, commonly known as insulin-like factor (INSL3), is essential for testis descent during fetal development; however, its function in the adult testis is still being elucidated. The study aimed to identify a relaxin family peptide receptor 2 (RXFP2)-specific antibody suitable for immunological approaches, analyze which testicular germ cell types express RXFP2, and clarify its expression dynamics in the boar testis. In addition, the function of INSL3-RXFP2 signaling on the germ cells was explored by neutralizing INSL3 using long-term active immunization. Samples were collected from Duroc boars, and a commercially available RXFP2-specific antibody directed against the human RXFP2 endodomain was identified by characterizing its specificity in HEK-293 cells expressing mouse RXFP2, and by demonstrating the suitability for analyzing RXFP2 expression in porcine tissues. RXFP2 mRNA and protein were both localized mainly in meiotic and post-meiotic germ cells, but not in Leydig cells. Functional RXFP2, which enables INSL3 to bind, was detected as an ∼85-kDa band, which increased in intensity from the pubertal stage onward. Interestingly, INSL3 immunization significantly reduced testis weight and induced a 4-fold increase in the frequency of apoptotic germ cells, which was associated with the up-regulation of pro-apoptotic caspase-3 (CASP3) and BAX, and the down-regulation of anti-apoptotic XIAP and BCL2, and a substantial reduction in sperm concentration. These results revealed that RXFP2 was expressed in boar meiotic and post-meiotic germ cells, where INSL3 neutralization led to increased germ cell apoptosis and reduced sperm output, suggesting that INSL3 acts as a survival/anti-apoptotic factor in maintaining sperm production.


Subject(s)
Apoptosis/genetics , Cell Survival/genetics , Germ Cells/metabolism , Insulin/metabolism , Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Testis/metabolism , Animals , Caspase 3/genetics , Caspase 3/metabolism , Down-Regulation , HEK293 Cells , Humans , Insulin/genetics , Male , Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Sus scrofa , Up-Regulation , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
7.
J Endocrinol ; 220(3): 247-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24464024

ABSTRACT

Relaxin-like factor (RLF), now mainly known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development; however, its function in the adult testis is still being elucidated. As a major step toward understanding the as-yet-unknown function of INSL3 in boars, this study aimed to develop a time-resolved fluoroimmunoassay for boar INSL3, characterize the dynamics of INSL3 expression during development, and demonstrate the expression of the INSL3 hormone-receptor system in the testis. All samples were collected from Duroc boars. The sensitivity of the assay system established was 8.2 pg/well (164 pg/ml), and no cross-reactivity with other hormones, such as porcine relaxin, was observed. Circulating INSL3 was shown to increase progressively during development. INSL3 secreted from the Leydig cells was released not only into the blood circulation but also into the interstitial and seminiferous compartments in sufficient concentrations. A testicular fractionation study revealed that its receptor RXFP2 transcripts were expressed mainly in testicular germ cells. In addition, INSL3 bound to the germ cell membranes in a hormone-specific and saturable manner. These results reveal that INSL3 secreted into the interstitial compartment from the Leydig cells is transported into the seminiferous compartments, where its receptor RXFP2 is expressed mainly in the germ cells to which INSL3 binds, suggesting that INSL3 functions as a paracrine factor on seminiferous germ cells.


Subject(s)
Insulin/genetics , Proteins/genetics , Receptor, Insulin/genetics , Sus scrofa/genetics , Testis/metabolism , Animals , Germ Cells/metabolism , Insulin/metabolism , Leydig Cells/metabolism , Male , Proteins/metabolism , Receptor, Insulin/metabolism , Sus scrofa/growth & development , Sus scrofa/metabolism , Testis/cytology , Testis/growth & development
8.
Biol Chem ; 394(9): 1181-94, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23934571

ABSTRACT

Relaxin-like factor (RLF), also called insulin-like peptide 3 (INSL3), is a member of the insulin/relaxin gene family and is produced by testicular Leydig cells. While the understanding of its effects is growing, very little is known about the structural and functional properties of native INSL3. Here, we demonstrate that native INSL3 isolated from goat testes is a single-chain structure with full biological activity, and is constitutively expressed and secreted by Leydig cells. Using a series of chromatography steps, native INSL3 was highly purified as a single 12-kDa peak as revealed by SDS-PAGE. MS/MS analysis provided 81% sequence coverage and revealed a distinct single-chain structure consisting of the B-, C-, and A-domains deduced previously from the INSL3 cDNA sequence. Moreover, the N-terminal peptide was six amino acid residues longer than predicted. Native INSL3 exhibited full bioactivity in HEK-293 cells expressing the receptor for INSL3. Immunoelectron microscopy and Western blot analysis revealed that INSL3 was secreted by Leydig cells through the constitutive pathway into blood and body fluids. We conclude, therefore, that goat INSL3 is constitutively secreted from Leydig cells as a B-C-A single-chain structure with full biological activity.


Subject(s)
Insulin/chemistry , Leydig Cells/chemistry , Proteins/chemistry , Testis/chemistry , Amino Acid Sequence , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Goats , HEK293 Cells , Humans , Insulin/isolation & purification , Insulin/pharmacology , Leydig Cells/cytology , Leydig Cells/metabolism , Male , Molecular Sequence Data , Protein Conformation , Proteins/isolation & purification , Proteins/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Testis/cytology , Testis/metabolism
9.
Biol Chem ; 2013 May 17.
Article in English | MEDLINE | ID: mdl-23729566

ABSTRACT

Abstract Relaxin-like factor (RLF), also called insulin-like peptide 3 (INSL3), is a member of the insulin/relaxin gene family and is produced by testicular Leydig cells. While the understanding of its effects is accumulating, very little is known about the structural and functional properties of native INSL3. Here, we demonstrate that native INSL3 isolated from goat testes is a single-chain structure with full biological activity, and is constitutively expressed and secreted by Leydig cells. Using a series of chromatography steps, native INSL3 was highly purified as a single 12-kDa peak as revealed by SDS-PAGE. MS/MS analysis provided 72% sequence coverage and revealed a distinct single-chain structure consisting of the B-, C-, and A-domains deduced previously from the INSL3 cDNA sequence. Moreover, the N-terminal peptide was 6 amino acid residues longer than predicted. Native INSL3 exhibited full bioactivity in HEK-293 cells expressing the receptor for INSL3. Immunoelectron microscopy and Western blot analysis revealed that INSL3 was secreted by Leydig cells through the constitutive pathway into blood and body fluids. We conclude, therefore, that goat INSL3 is constitutively secreted from Leydig cells as a B-C-A single-chain structure with full biological activity.

10.
Ital J Anat Embryol ; 118(1 Suppl): 23-5, 2013.
Article in English | MEDLINE | ID: mdl-24640564

ABSTRACT

This study investigated the possibility of the presence of specific receptor for relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) in boar testes. While RLF/INSL3 was produced by Leydig cells in the boar testis, its own receptor RXFP2 was expressed mainly in meiotic and post-meiotic germ cells, but not in Leydig cells, suggesting the existence of RLF/INSL3-RXFP2 signaling in germ cells of boars.


Subject(s)
Insulin/metabolism , Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Testis/metabolism , Animals , Insulin/chemistry , Male , Protein Structure, Tertiary , Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , Sus scrofa
11.
Biochem J ; 441(1): 265-73, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21899516

ABSTRACT

RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B-C-A monomeric structure with full biological activity.


Subject(s)
Gene Expression Regulation/physiology , Insulin/metabolism , Leydig Cells/metabolism , Proteins/metabolism , Swine/physiology , Animals , Cells, Cultured , HEK293 Cells , Humans , Insulin/genetics , Male , Protein Structure, Tertiary , Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
12.
J Endocrinol ; 207(2): 135-49, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20807724

ABSTRACT

Although the physiological role of relaxin (RLN) in males remains largely unknown, there is limited evidence that the testis might be a candidate source and target of RLN in boars, as RLN transcripts are detected in the boar testis and it contains RLN-binding sites. To determine whether the boar testis acts as a source and target tissue of RLN, we characterised the expression pattern and cellular localisation of both RLN and its own receptor LGR7 (RXFP1) in boar testes during postnatal development by molecular and immunological approaches. Testes were collected from Duroc boars, and partial cDNA sequences of the boar homologue of human RXFP1 were identified. RLN expression increased through puberty onwards, while RXFP1 expression changed little during development. RLN mRNA and protein expression were restricted to the Leydig cells, whereas both Leydig cells and seminiferous epithelial cells expressed RXFP1 mRNA and protein. Interestingly, RLN was expressed in the testis as an 18 kDa form (the expected size of proRLN), but not as the 6 kDa mature form, during development because of a lack of the enzyme required for proRLN processing. In contrast, RXFP1 was detected at all stages as specific bands of 75 and 91-95 kDa (likely non-glycosylated and glycosylated RXFP1 respectively). Thus, we provide evidence for expression of RLN-RXFP1 ligand-receptor system in the boar testis, suggesting that the testis act as a source and possible target tissue of RLN.


Subject(s)
Gene Expression Regulation/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Relaxin/metabolism , Swine/physiology , Testis/metabolism , Amino Acid Sequence , Animals , Base Sequence , Male , Molecular Sequence Data , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/chemistry , Receptors, Peptide/genetics , Relaxin/chemistry , Relaxin/genetics , Sequence Alignment
13.
Ann N Y Acad Sci ; 1160: 194-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19416187

ABSTRACT

The expression and cellular localization of relaxin and its own receptor, LGR7/RXFP1, were demonstrated in the boar testis, where relaxin was produced by the Leydig cells as 18-kDa pro-relaxin and LGR7/RXFP1 was detected in both Leydig cells and seminiferous epithelial cells, suggesting that a functional relaxin-LGR7/RXFP1 hormone-receptor network operates within the boar testis.


Subject(s)
Relaxin/genetics , Relaxin/metabolism , Swine/physiology , Testis/metabolism , Animals , Epithelial Cells/metabolism , Immunohistochemistry , In Situ Hybridization , Leydig Cells/metabolism , Male , Receptors, G-Protein-Coupled/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...