Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38798451

ABSTRACT

Neuronal dysfunction has been extensively studied as a central feature of neurodegenerative tauopathies. However, across neurodegenerative diseases, there is strong evidence for active involvement of immune cells like microglia in driving disease pathophysiology. Here, we demonstrate that tau mRNA and protein are expressed in microglia in human brains and in human induced pluripotent stem cell (iPSC)-derived microglia like cells (iMGLs). Using iMGLs harboring the MAPT IVS10+16 mutation and isogenic controls, we demonstrate that a tau mutation is sufficient to alter microglial transcriptional states. We discovered that MAPT IVS10+16 microglia exhibit cytoskeletal abnormalities, stalled phagocytosis, disrupted TREM2/TYROBP networks, and altered metabolism. Additionally, we found that secretory factors from MAPT IVS10+16 iMGLs impact neuronal health, reducing synaptic density in neurons. Key features observed in vitro were recapitulated in human brain tissue and cerebrospinal fluid from MAPT mutations carriers. Together, our findings that MAPT IVS10+16 drives cell-intrinsic dysfunction in microglia that impacts neuronal health has major implications for development of therapeutic strategies.

2.
bioRxiv ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38328044

ABSTRACT

Circular RNAs (circRNAs), covalently closed RNA molecules that form due to back-splicing of RNA transcripts, have recently been implicated in Alzheimer's disease and related tauopathies. circRNAs are regulated by N6-methyladenosine (m6A) RNA methylation, can serve as "sponges" for proteins and RNAs, and can be translated into protein via a cap-independent mechanism. Mechanisms underlying circRNA dysregulation in tauopathies and causal relationships between circRNA and neurodegeneration are currently unknown. In the current study, we aimed to determine whether pathogenic forms of tau drive circRNA dysregulation and whether such dysregulation causally mediates neurodegeneration. We identify circRNAs that are differentially expressed in the brain of a Drosophila model of tauopathy and in induced pluripotent stem cell (iPSC)-derived neurons carrying a tau mutation associated with autosomal dominant tauopathy. We leverage Drosophila to discover that depletion of circular forms of muscleblind (circMbl), a circRNA that is particularly abundant in brains of tau transgenic Drosophila, significantly suppresses tau neurotoxicity, suggesting that tau-induced circMbl elevation is neurotoxic. We detect a general elevation of m6A RNA methylation and circRNA methylation in tau transgenic Drosophila and find that tau-induced m6A methylation is a mechanistic driver of circMbl formation. Interestingly, we find that circRNA and m6A RNA accumulate within nuclear envelope invaginations of tau transgenic Drosophila and in iPSC-derived cerebral organoid models of tauopathy. Taken together, our studies add critical new insight into the mechanisms underlying circRNA dysregulation in tauopathy and identify m6A-modified circRNA as a causal factor contributing to neurodegeneration. These findings add to a growing literature implicating pathogenic forms of tau as drivers of altered RNA metabolism.

3.
Mol Psychiatry ; 28(11): 4889-4901, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730840

ABSTRACT

Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.


Subject(s)
Alzheimer Disease , RNA, Long Noncoding , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Neurons/metabolism , RNA, Long Noncoding/genetics , Stress Granules , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism
4.
Acta Neuropathol ; 145(6): 749-772, 2023 06.
Article in English | MEDLINE | ID: mdl-37115208

ABSTRACT

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood. Here, we investigate the mechanisms by which a homozygous stop-gain TREM2 mutation (p.Q33X) contributes to NHD. Induced pluripotent stem cell (iPSC)-derived microglia (iMGLs) were generated from two NHD families: three homozygous TREM2 p.Q33X mutation carriers (termed NHD), two heterozygous mutation carriers, one related non-carrier, and two unrelated non-carriers. Transcriptomic and biochemical analyses revealed that iMGLs from NHD patients exhibited lysosomal dysfunction, downregulation of cholesterol genes, and reduced lipid droplets compared to controls. Also, NHD iMGLs displayed defective activation and HLA antigen presentation. This defective activation and lipid droplet content were restored by enhancing lysosomal biogenesis through mTOR-dependent and independent pathways. Alteration in lysosomal gene expression, such as decreased expression of genes implicated in lysosomal acidification (ATP6AP2) and chaperone mediated autophagy (LAMP2), together with reduction in lipid droplets were also observed in post-mortem brain tissues from NHD patients, thus closely recapitulating in vivo the phenotype observed in iMGLs in vitro. Our study provides the first cellular and molecular evidence that the TREM2 p.Q33X mutation in microglia leads to defects in lysosomal function and that compounds targeting lysosomal biogenesis restore a number of NHD microglial defects. A better understanding of how microglial lipid metabolism and lysosomal machinery are altered in NHD and how these defects impact microglia activation may provide new insights into mechanisms underlying NHD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Microglia , Adult , Humans , Microglia/metabolism , Lipid Metabolism/genetics , Loss of Function Mutation , Mutation/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Prorenin Receptor
5.
medRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909621

ABSTRACT

Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10+16, or p.R406W mutation, and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer’s disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.

6.
Front Mol Biosci ; 10: 1051494, 2023.
Article in English | MEDLINE | ID: mdl-36845551

ABSTRACT

Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.

8.
PLoS One ; 14(3): e0212877, 2019.
Article in English | MEDLINE | ID: mdl-30849089

ABSTRACT

Herpes simplex virus 2 (HSV-2) is a large double-stranded DNA virus that causes genital sores when spread by sexual contact and is a principal cause of viral encephalitis in newborns and infants. Viral glycoproteins enable virion entry into and spread between cells, making glycoproteins a prime target for vaccine development. A truncated glycoprotein D2 (gD2) vaccine candidate, recently tested in the phase 3 Herpevac Trial for Women, did not prevent HSV-2 infection in initially seronegative women. Some women who became infected experienced multiple recurrences during the trial. The HSV US7, US8, and US9 genes encode glycoprotein I (gI), glycoprotein E (gE), and the US9 type II membrane protein, respectively. These proteins participate in viral spread across cell junctions and facilitate anterograde transport of virion components in neurons, prompting us to investigate whether sequence variants in these genes could be associated with frequent recurrence. The nucleotide sequences and dN/dS ratios of the US7-US9 region from viral isolates of individuals who experienced multiple recurrences were compared with those who had had a single episode of disease. No consistent polymorphism(s) distinguished the recurrent isolates. In frequently recurring isolates, the dN/dS ratio of US7 was low while greater variation (higher dN/dS ratio) occurred in US8, suggesting conserved function of the former during reactivation. Phylogenetic reconstruction of the US7-US9 region revealed eight strongly supported clusters within the 55 U.S. HSV-2 strains sampled, which were preserved in a second global phylogeny. Thus, although we have demonstrated evolutionary diversity in the US7-US9 complex, we found no molecular evidence of sequence variation in US7-US9 that distinguishes isolates from subjects with frequently recurrent episodes of disease.


Subject(s)
Herpes Genitalis/virology , Herpesvirus 2, Human/genetics , Phylogeny , Viral Proteins/genetics , Animals , Chlorocebus aethiops , DNA, Viral/genetics , DNA, Viral/isolation & purification , Datasets as Topic , Evolution, Molecular , Female , Glycoproteins/genetics , Herpesvirus 2, Human/isolation & purification , Humans , Membrane Glycoproteins/genetics , Multigene Family/genetics , Recurrence , Vero Cells , Virus Activation/genetics
9.
PeerJ ; 5: e3815, 2017.
Article in English | MEDLINE | ID: mdl-28951814

ABSTRACT

The Pooideae are a highly diverse C3 grass subfamily that includes some of the most economically important crops, nested within the highly speciose core-pooid clade. Here, we build and explore the phylogeny of the Pooideae within a temporal framework, assessing its patterns of diversification and its chromosomal evolutionary changes in the light of past environmental transformations. We sequenced five plastid DNA loci, two coding (ndhF, matk) and three non-coding (trnH-psbA, trnT-L and trnL-F), in 163 Poaceae taxa, including representatives for all subfamilies of the grasses and all but four ingroup Pooideae tribes. Parsimony and Bayesian phylogenetic analyses were conducted and divergence times were inferred in BEAST using a relaxed molecular clock. Diversification rates were assessed using the MEDUSA approach, and chromosome evolution was analyzed using the chromEvol software. Diversification of the Pooideae started in the Late-Eocene and was especially intense during the Oligocene-Miocene. The background diversification rate increased significantly at the time of the origin of the Poodae + Triticodae clade. This shift in diversification occurred in a context of falling temperatures that potentially increased ecological opportunities for grasses adapted to open areas around the world. The base haploid chromosome number n = 7 has remained stable throughout the phylogenetic history of the core pooids and we found no link between chromosome transitions and major diversification events in the Pooideae.

10.
J Virol ; 91(23)2017 12 01.
Article in English | MEDLINE | ID: mdl-28931680

ABSTRACT

Herpes simplex virus 1 (HSV-1) and HSV-2 are large, double-stranded DNA viruses that cause lifelong persistent infections characterized by periods of quiescence and recurrent disease. How HSV evolves within an infected individual experiencing multiple episodes of recurrent disease over time is not known. We determined the genome sequences of viruses isolated from two subjects in the Herpevac Trial for Women who experienced primary HSV-2 genital disease and compared them with sequences of viruses isolated from the subsequent fifth or sixth episode of recurrent disease in the same individuals. Each of the HSV-2 genome sequences was initially obtained using next-generation sequencing and completed with Sanger sequencing. Polymorphisms over the entire genomes were mapped, and amino acid variants resulting from nonsynonymous changes were analyzed based on the secondary and tertiary structures of a previously crystallized protein. A phylogenetic reconstruction was used to assess relationships among the four HSV-2 samples, other North American sequences, and reference sequences. Little genetic drift was detected in viruses shed by the same subjects following repeated reactivation events, suggesting strong selective pressure on the viral genome to maintain sequence fidelity during reactivations from its latent state within an individual host. Our results also demonstrate that some primary HSV-2 isolates from North America more closely resemble the HG52 laboratory strain from Scotland than the low-passage-number clinical isolate SD90e from South Africa or laboratory strain 333. Thus, one of the sequences reported here would be a logical choice as a reference strain for inclusion in future studies of North American HSV-2 isolates.IMPORTANCE The extent to which the HSV-2 genome evolves during multiple episodes of reactivation from its latent state within an infected individual is not known. We used next-generation sequencing techniques to determine whole-genome sequences of four viral samples from two subjects in the Herpevac Trial. The sequence of each subject's well-documented primary isolate was compared with the sequence of the isolate from their fifth or sixth episode of recurrent disease. Only 19 genetic polymorphisms unique to the primary or recurrent isolate were identified, 10 in subject A and 9 in subject B. These observations indicate remarkable genetic conservation between primary and recurrent episodes of HSV-2 infection and imply that strong selection pressures exist to maintain the fidelity of the viral genome during repeated reactivations from its latent state. The genome conservation observed also has implications for the potential success of a therapeutic vaccine.


Subject(s)
Evolution, Molecular , Genome, Viral , Herpes Genitalis/virology , Herpesvirus 2, Human/genetics , Clinical Trials as Topic , DNA, Viral/genetics , Female , Genetic Drift , Herpesvirus 2, Human/isolation & purification , Herpesvirus 2, Human/physiology , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , North America , Phylogeny , Polymorphism, Genetic , Recurrence , Scotland , Sequence Analysis, DNA , South Africa , Virus Activation , Virus Shedding
11.
PLoS One ; 12(4): e0176687, 2017.
Article in English | MEDLINE | ID: mdl-28448558

ABSTRACT

The Herpevac Trial for Women revealed that three dose HSV-2 gD vaccine was 58% protective against culture-positive HSV-1 genital disease, but it was not protective against HSV-2 infection or disease. To determine whether vaccine-induced immune responses had selected for a particular gD sequence in strains infecting vaccine recipients compared with viruses infecting control subjects, genetic sequencing studies were carried out on viruses isolated from subjects infected with HSV-1 or HSV-2. We identified naturally occurring variants among the gD sequences obtained from 83 infected subjects. Unique or low frequency amino acid substitutions in the ectodomain of gD were found in 6 of 39 HSV-1-infected subjects and in 7 of 44 HSV-2-infected subjects. However, no consistent amino acid change was identified in isolates from gD-2 vaccine recipients compared with infected placebo recipients. gC and gE surround and partially shield gD from neutralizing antibody, and gB also participates closely in the viral entry process. Therefore, these genes were sequenced from a number of isolates to assess whether sequence variation may alter protein conformation and influence the virus strain's capacity to be neutralized by vaccine-induced antibody. gC and gE genes sequenced from HSV-1-infected subjects showed more variability than their HSV-2 counterparts. The gB sequences of HSV-1 oral isolates resembled each other more than they did gB sequences rom genital isolates. Overall, however, comparison of glycoprotein sequences of viral isolates obtained from infected subjects did not reveal any singular selective pressure on the viral cell attachment protein or surrounding glycoproteins due to administration of gD-2 vaccine.


Subject(s)
Herpesvirus 1, Human/immunology , Herpesvirus Vaccines , Membrane Glycoproteins/chemistry , Viral Proteins/chemistry , Animals , Clinical Trials, Phase III as Topic , Female , Herpesvirus 1, Human/isolation & purification , Humans , Sequence Analysis, Protein , Vero Cells
12.
Mol Phylogenet Evol ; 91: 68-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26032971

ABSTRACT

Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG ß-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether ß-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the ß-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the ß-amylase exon+intron positions is optimal at all taxonomic levels.


Subject(s)
Evolution, Molecular , Genes, Plant , Phylogeny , Poaceae/classification , Poaceae/genetics , beta-Amylase/genetics , Genetic Markers , Introns , Pseudogenes , Recombination, Genetic , Selection, Genetic , beta-Amylase/classification
13.
Mol Phylogenet Evol ; 68(1): 106-18, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23511216

ABSTRACT

The occurrence of Stowaway MITEs and their potential footprints in the grasses was assessed within an explicit phylogenetic framework. An organismal tree was used to analyze the distribution and evolutionary dynamics of these elements and their potential excision footprints in the fourth intron of the ß-amylase gene and in other introns of several nuclear genes across the Poaceae. Megablast and discontiguous megablast searches in the Entrez nucleotide database were performed for the ß-amylase, blz-1, dmc1, nuc, and xly genes MITEs. These elements and their potential footprints were distributed in introns and intergenic spacers of many other nuclear genes throughout the BEP lineages; however, they were absent in the studied PACCMAD lineages. A plausible underlying dynamic of successive acquisitions and deletions of ß-amylase Stowaway MITEs in the temperate grasses could be explained by three alternative hypotheses: (i) a single early acquisition of a palindrome element, similar to Tc1-Mariner, in the fourth intron of the ß-amylase gene in the ancestor of the Pooideae, followed by multiple independent losses, (ii) multiple independent acquisitions of MITEs in non-related pooid lineages or (iii) different waves of acquisition of MITEs, followed by multiple losses and horizontal transfers in the temperate grasses. This last hypothesis seems to fit best with the evidence found to date.


Subject(s)
DNA Transposable Elements , DNA, Plant/classification , Nuclear Proteins/classification , Plant Proteins/classification , Poaceae/classification , beta-Amylase/classification , Base Sequence , Biological Evolution , DNA, Plant/genetics , Introns , Molecular Sequence Data , Nuclear Proteins/genetics , Phylogeny , Plant Proteins/genetics , Poaceae/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid , beta-Amylase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...