Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114149, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38678560

ABSTRACT

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.

2.
Cells ; 12(17)2023 08 30.
Article in English | MEDLINE | ID: mdl-37681905

ABSTRACT

RATIONALE: The adult cardiac extracellular matrix (ECM) is largely comprised of type I collagen. In addition to serving as the primary structural support component of the cardiac ECM, type I collagen also provides an organizational platform for other ECM proteins, matricellular proteins, and signaling components that impact cellular stress sensing in vivo. OBJECTIVE: Here we investigated how the content and integrity of type I collagen affect cardiac structure function and response to injury. METHODS AND RESULTS: We generated and characterized Col1a2-/- mice using standard gene targeting. Col1a2-/- mice were viable, although by young adulthood their hearts showed alterations in ECM mechanical properties, as well as an unanticipated activation of cardiac fibroblasts and induction of a progressive fibrotic response. This included augmented TGFß activity, increases in fibroblast number, and progressive cardiac hypertrophy, with reduced functional performance by 9 months of age. Col1a2-loxP-targeted mice were also generated and crossed with the tamoxifen-inducible Postn-MerCreMer mice to delete the Col1a2 gene in myofibroblasts with pressure overload injury. Interestingly, while germline Col1a2-/- mice showed gradual pathologic hypertrophy and fibrosis with aging, the acute deletion of Col1a2 from activated adult myofibroblasts showed a loss of total collagen deposition with acute cardiac injury and an acute reduction in pressure overload-induce cardiac hypertrophy. However, this reduction in hypertrophy due to myofibroblast-specific Col1a2 deletion was lost after 2 and 6 weeks of pressure overload, as fibrotic deposition accumulated. CONCLUSIONS: Defective type I collagen in the heart alters the structural integrity of the ECM and leads to cardiomyopathy in adulthood, with fibroblast expansion, activation, and alternate fibrotic ECM deposition. However, acute inhibition of type I collagen production can have an anti-fibrotic and anti-hypertrophic effect.


Subject(s)
Cardiomyopathies , Collagen Type I , Animals , Mice , Cardiomegaly/genetics , Collagen Type I/genetics , Fibrosis
3.
Europace ; 24(6): 1025-1035, 2022 07 15.
Article in English | MEDLINE | ID: mdl-34792112

ABSTRACT

AIMS: The study investigates the role and mechanisms of clinically translatable exercise heart rate (HR) envelope effects, without dyssynchrony, on myocardial ischaemia tolerance compared to standard preconditioning methods. Since the magnitude and duration of exercise HR acceleration are tightly correlated with beneficial cardiac outcomes, it is hypothesized that a paced exercise-similar HR envelope, delivered in a maximally physiologic way that avoids the toxic effects of chamber dyssynchrony, may be more than simply a readout, but rather also a significant trigger of myocardial conditioning and stress resistance. METHODS AND RESULTS: For 8 days over 2 weeks, sedated mice were atrial-paced once daily via an oesophageal electrode to deliver an exercise-similar HR pattern with preserved atrioventricular and interventricular synchrony. Effects on cardiac calcium handling, protein expression/modification, and tolerance to ischaemia-reperfusion (IR) injury were assessed and compared to those in sham-paced mice and to the effects of exercise and ischaemic preconditioning (IPC). The paced cohort displayed improved myocardial IR injury tolerance vs. sham controls with an effect size similar to that afforded by treadmill exercise or IPC. Hearts from paced mice displayed changes in Ca2+ handling, coupled with changes in phosphorylation of calcium/calmodulin protein kinase II, phospholamban and ryanodine receptor channel, and transcriptional remodelling associated with a cardioprotective paradigm. CONCLUSIONS: The HR pattern of exercise, delivered by atrial pacing that preserves intracardiac synchrony, induces cardiac conditioning and enhances ischaemic stress resistance. This identifies the HR pattern as a signal for conditioning and suggests the potential to repurpose atrial pacing for cardioprotection.


Subject(s)
Ischemic Preconditioning, Myocardial , Animals , Calcium , Heart Atria , Heart Rate , Humans , Ischemia , Mice
4.
Elife ; 102021 02 25.
Article in English | MEDLINE | ID: mdl-33629656

ABSTRACT

The endothelium responds to numerous chemical and mechanical factors in regulating vascular tone, blood pressure, and blood flow. The endothelial volume-regulated anion channel (VRAC) has been proposed to be mechanosensitive and thereby sense fluid flow and hydrostatic pressure to regulate vascular function. Here, we show that the leucine-rich repeat-containing protein 8a, LRRC8A (SWELL1), is required for VRAC in human umbilical vein endothelial cells (HUVECs). Endothelial LRRC8A regulates AKT-endothelial nitric oxide synthase (eNOS) signaling under basal, stretch, and shear-flow stimulation, forms a GRB2-Cav1-eNOS signaling complex, and is required for endothelial cell alignment to laminar shear flow. Endothelium-restricted Lrrc8a KO mice develop hypertension in response to chronic angiotensin-II infusion and exhibit impaired retinal blood flow with both diffuse and focal blood vessel narrowing in the setting of type 2 diabetes (T2D). These data demonstrate that LRRC8A regulates AKT-eNOS in endothelium and is required for maintaining vascular function, particularly in the setting of T2D.


Subject(s)
Endothelium/physiology , Membrane Proteins/genetics , Nitric Oxide Synthase Type III/genetics , Proto-Oncogene Proteins c-akt/genetics , Animals , Female , Male , Membrane Proteins/metabolism , Mice , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
5.
Elife ; 92020 09 15.
Article in English | MEDLINE | ID: mdl-32930093

ABSTRACT

Maintenance of skeletal muscle is beneficial in obesity and Type 2 diabetes. Mechanical stimulation can regulate skeletal muscle differentiation, growth and metabolism; however, the molecular mechanosensor remains unknown. Here, we show that SWELL1 (Lrrc8a) functionally encodes a swell-activated anion channel that regulates PI3K-AKT, ERK1/2, mTOR signaling, muscle differentiation, myoblast fusion, cellular oxygen consumption, and glycolysis in skeletal muscle cells. LRRC8A over-expression in Lrrc8a KO myotubes boosts PI3K-AKT-mTOR signaling to supra-normal levels and fully rescues myotube formation. Skeletal muscle-targeted Lrrc8a KO mice have smaller myofibers, generate less force ex vivo, and exhibit reduced exercise endurance, associated with increased adiposity under basal conditions, and glucose intolerance and insulin resistance when raised on a high-fat diet, compared to wild-type (WT) mice. These results reveal that the LRRC8 complex regulates insulin-PI3K-AKT-mTOR signaling in skeletal muscle to influence skeletal muscle differentiation in vitro and skeletal myofiber size, muscle function, adiposity and systemic metabolism in vivo.


Skeletal muscles ­ the force-generating tissue attached to bones ­ must maintain their mass and health for the body to work properly. It is therefore necessary to understand how an organism can regulate the way skeletal muscles form, grow and heal. A multitude of factors can control how muscles form, including mechanical signals. The molecules that can sense these mechanical stimuli, however, remain unknown. Mechanoresponsive ion channels provide possible candidates for these molecular sensors. These proteins are studded through the cell membranes, where they can respond to mechanical changes by opening and allowing the flow of ions in and out of a cell, or by changing interactions with other proteins. The SWELL1 protein is a component of an ion channel known as VRAC, which potentially responds to mechanical stimuli. This channel is associated with many biological processes such as cells multiplying, migrating, growing and dying, but it is still unclear how. Here, Kumar et al. first tested whether SWELL1 controls how skeletal muscle precursors mature into their differentiated and functional form. These experiments showed that SWELL1 regulates this differentiation process under the influence of the hormone insulin, as well as mechanical signals such as cell stretching. In addition, this work revealed that SWELL1 relies on an adaptor molecule called GRB2 to relay these signals in the cell. Next, Kumar et al. genetically engineered mice lacking SWELL1 only in skeletal muscle. These animals had smaller muscle cells, as well as muscles that were weaker and less enduring. When raised on a high-calorie diet, the mutant mice also got more obese and developed resistance to insulin, which is an important step driving obesity-induced diabetes. Together, these findings show that SWELL1 helps to regulate the formation and function of muscle cells, and highlights how an ion channel participates in these processes. Healthy muscles are key for overall wellbeing, as they also protect against obesity and obesity-related conditions such as type 2 diabetes or nonalcoholic fatty liver disease. This suggests that targeting SWELL1 could prove advantageous in a clinical setting.


Subject(s)
Adiposity/genetics , Glucose/metabolism , Membrane Proteins/genetics , Mice/physiology , Muscle, Skeletal/physiology , Signal Transduction/genetics , Animals , Cell Size , Female , Male , Membrane Proteins/metabolism , Mice/genetics , Muscle Cells
6.
Heart Fail Rev ; 24(5): 725-741, 2019 09.
Article in English | MEDLINE | ID: mdl-30972522

ABSTRACT

Pathological cardiac remodeling is induced through multiple mechanisms that include neurohumoral and biomechanical stress resulting in transcriptional alterations that ultimately become maladaptive and lead to the development of heart failure (HF). Although cardiac transcriptional remodeling is mediated by the activation of numerous signaling pathways that converge on a limited number of transcription factors (TFs) that promote hypertrophy (pro-hypertrophic TFs), the current therapeutic approach to prevent HF utilizes pharmacological inhibitors that largely target specific receptors that are activated in response to pathological stimuli. Thus, there is limited efficacy with the current pharmacological approaches to inhibit transcriptional remodeling associated with the development of HF. Recent evidence suggests that these pro-hypertrophic TFs co-localize at enhancers to cooperatively activate transcription associated with pathological cardiac remodeling. In disease states, including cancer and HF, evidence suggests that the general transcriptional machinery is disproportionately bound at enhancers. Therefore, pharmacological inhibition of transcriptional machinery that integrates pro-hypertrophic TFs may represent a promising alternative therapeutic approach to limit pathological remodeling associated with the development of HF.


Subject(s)
Gene Expression Regulation/drug effects , Heart Failure/drug therapy , Heart Failure/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Animals , Atrial Remodeling/genetics , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Humans , Mice , Molecular Targeted Therapy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/drug effects , Ventricular Remodeling/genetics
7.
J Mol Cell Cardiol ; 129: 27-38, 2019 04.
Article in English | MEDLINE | ID: mdl-30769017

ABSTRACT

Thyroid hormone (TH) is a key regulator of transcriptional homeostasis in the heart. While hypothyroidism is known to result in adverse cardiac effects, the molecular mechanisms that modulate TH signaling are not completely understood. Mediator is a multiprotein complex that coordinates signal-dependent transcription factors with the basal transcriptional machinery to regulate gene expression. Mediator complex protein, Med13, represses numerous thyroid receptor (TR) response genes in the heart. Further, cardiac-specific overexpression of Med13 in mice that were treated with propylthiouracil (PTU), an inhibitor of the biosynthesis of the active TH, triiodothyronine (T3), resulted in resistance to PTU-dependent decreases in cardiac contractility. Therefore, these studies aimed to determine if Med13 is necessary for the cardiac response to hypothyroidism. Here we demonstrate that Med13 expression is induced in the hearts of mice with hypothyroidism. To elucidate the role of Med13 in regulating gene transcription in response to TH signaling in cardiac tissue, we utilized an unbiased RNA sequencing approach to define the TH-dependent alterations in gene expression in wild-type mice or those with a cardiac-specific deletion in Med13 (Med13cKO). Mice were fed a diet of PTU to induce a hypothyroid state or normal chow for either 4 or 16 weeks, and an additional group of mice on a PTU diet were treated acutely with T3 to re-establish a euthyroid state. Echocardiography revealed that wild-type mice had a decreased heart rate in response to PTU with a trend toward a reduced cardiac ejection fraction. Notably, cardiomyocyte-specific deletion of Med13 exacerbated cardiac dysfunction. Collectively, these studies reveal cardiac transcriptional pathways regulated in response to hypothyroidism and re-establishment of a euthyroid state and define molecular pathways that are regulated by Med13 in response to TH signaling.


Subject(s)
Mediator Complex/metabolism , Myocardium/metabolism , Thyroid Hormones/metabolism , Transcription, Genetic , Animals , Electrocardiography , Gene Deletion , Gene Expression Regulation , Hypothyroidism/genetics , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Propylthiouracil , Signal Transduction
8.
Cardiovasc Res ; 115(8): 1343-1356, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30496354

ABSTRACT

AIMS: Cardiac remodelling in the ischaemic heart determines prognosis in patients with ischaemic heart disease (IHD), while enhancement of angiogenesis and cell survival has shown great potential for IHD despite translational challenges. Phosphoinositide 3-kinase (PI3K)/Akt signalling pathways play a critical role in promoting angiogenesis and cell survival. However, the effect of PI3Kß in the ischaemic heart is poorly understood. This study investigates the role of endothelial and cardiomyocyte (CM) PI3Kß in post-infarct cardiac remodelling. METHODS AND RESULTS: PI3Kß catalytic subunit-p110ß level was increased in infarcted murine and human hearts. Using cell type-specific loss-of-function approaches, we reported novel and distinct actions of p110ß in endothelial cells (ECs) vs. CMs in response to myocardial ischaemic injury. Inactivation of endothelial p110ß resulted in marked resistance to infarction and adverse cardiac remodelling with decreased mortality, improved systolic function, preserved microvasculature, and enhanced Akt activation. Cultured ECs with p110ß knockout or inhibition displayed preferential PI3Kα/Akt/endothelial nitric oxide synthase signalling that consequently promoted protective signalling and angiogenesis. In contrast, mice with CM p110ß-deficiency exhibited adverse post-infarct ventricular remodelling with larger infarct size and deteriorated cardiac function, which was due to enhanced susceptibility of CMs to ischaemia-mediated cell death. Disruption of CM p110ß signalling compromised nuclear p110ß and phospho-Akt levels leading to perturbed gene expression and elevated pro-cell death protein levels, increasing the susceptibility to CM death. A similar divergent response of PI3Kß endothelial and CM mutant mice was seen using a model of myocardial ischaemia-reperfusion injury. CONCLUSION: These data demonstrate novel, differential, and cell-specific functions of PI3Kß in the ischaemic heart. While the loss of endothelial PI3Kß activity produces cardioprotective effects, CM PI3Kß is protective against myocardial ischaemic injury.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/enzymology , Myocardial Infarction/enzymology , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/enzymology , Ventricular Remodeling , Animals , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/deficiency , Class I Phosphatidylinositol 3-Kinases/genetics , Disease Models, Animal , Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Male , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , Neovascularization, Physiologic , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
9.
Antibiotics (Basel) ; 4(4): 617-626, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26877886

ABSTRACT

Because of the potential of a new anti-staphylococcal lead compound SK-03-92 as a topical antibiotic, a patch, or an orally active drug, we sought to determine its safety profile and oral bioavailability. SK-03-92 had a high IC50 (125 µg/ml) in vitro against several mammalian cell lines, and mice injected intraperiteonally at the highest dose did not exhibit gross toxicity (e.g. altered gait, ungroomed, significant weight loss). Single dose (100 µg/g) pharmacokinetic (PK) analysis with formulated SK-03-92 showed that peak plasma concentration (1.64 µg/ml) was achieved at 20-30 min. Oral relative bioavailability was 8%, and the drug half-life was 20-30 min, demonstrating that SK-03-92 is likely not a candidate for oral delivery. Five-day and two-week PK analyses demonstrated that SK-03-92 plasma levels were low. Multi-dose analysis showed no gross adverse effects to the mice and a SK-03-92 peak plasma concentration of 2.12 µg/ml with the presence of significant concentrations of breakdown products 15 min after dosing. SK-03-92 appeared to be very safe based on tissue culture and mouse gross toxicity determinations, but the peak plasma concentration suggests that a pro-drug of SK-03-92 or preparation of analogs of SK-03-92 with greater bioavailability and longer half-lives are warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...