Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36551636

ABSTRACT

We describe the repurposing and optimization of the TK-positive (thymidine kinase) vaccinia virus strain ACAM1000/ACAM2000™ as an oncolytic virus. This virus strain has been widely used as a smallpox vaccine and was also used safely in our recent clinical trial in patients with advanced solid tumors and Acute Myeloid Leukemia (AML). The vaccinia virus was amplified in CV1 cells and named CAL1. CAL1 induced remarkable oncolysis in various human and mouse cancer cells and preferentially amplified in cancer cells, supporting the use of this strain as an oncolytic virus. However, the therapeutic potential of CAL1, as demonstrated with other oncolytic viruses, is severely restricted by the patients' immune system. Thus, to develop a clinically relevant oncolytic virotherapy agent, we generated a new off-the-shelf therapeutic called Supernova1 (SNV1) by loading CAL1 virus into allogeneic adipose-derived mesenchymal stem cells (AD-MSC). Culturing the CAL1-infected stem cells allows the expression of virally encoded proteins and viral amplification prior to cryopreservation. We found that the CAL1 virus loaded into AD-MSC was resistant to humoral inactivation. Importantly, the virus-loaded stem cells (SNV1) released larger number of infectious viral particles and virally encoded proteins, leading to augmented therapeutic efficacy in vitro and in animal tumor models.

3.
J Transl Med ; 17(1): 271, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31426803

ABSTRACT

BACKGROUND: ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML). METHODS: Twenty-four patients with solid tumors and two patients with AML participated in this open-label, non-randomized dose-escalation trial. All patients were treated with SVF derived from autologous fat and incubated for 15 min to 1 h with ACAM2000 before application. Six patients received systemic intravenous application only, one patient received intra-tumoral application only, 15 patients received combination intravenous with intra-tumoral deployment, 3 patients received intravenous and intra-peritoneal injection and 1 patient received intravenous, intra-tumoral and intra-peritoneal injections. Safety at each dose level of ACAM2000 (1.4 × 106 plaque-forming units (PFU) to 1.8 × 107 PFU) was evaluated. Blood samples for PK assessments, flow cytometry and cytokine analysis were collected at baseline and 1 min, 1 h, 1 day, 1 week, 1 month, 3 months and 6 months following treatment. RESULTS: No serious toxicities (> grade 2) were reported. Seven patients reported an adverse event (AE) in this study: self-limiting skin rashes, lasting 7 to 18 days-an expected adverse reaction to ACAM2000. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients' blood samples immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication at tumor sites, and correlating with longer survival of these patients. No major increase in cytokine levels or correlation between cytokine levels and skin rashes was noted. We were able to assess some initial efficacy signals, especially when the ACAM2000/SVF treatment was combined with checkpoint inhibition. CONCLUSIONS: Treatment with ACAM2000/SVF in patients with advanced solid tumors or AML is safe and well tolerated, and several patients had signals of an anticancer effect. These promising initial clinical results merit further investigation of therapeutic utility. Trial registration Retrospectively registered (ISRCTN#10201650) on October 22, 2018.


Subject(s)
Adipose Tissue/blood supply , Adipose Tissue/cytology , Oncolytic Viruses/physiology , Thymidine Kinase/metabolism , Vaccinia virus/physiology , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , DNA, Viral/blood , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Oncolytic Virotherapy/adverse effects , Stromal Cells/metabolism , Treatment Outcome , Young Adult
4.
J Transl Med ; 17(1): 100, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30917829

ABSTRACT

BACKGROUND: Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. METHODS: To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. RESULTS: Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. CONCLUSIONS: Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach.


Subject(s)
Adipose Tissue/cytology , Adult Stem Cells/transplantation , Allogeneic Cells/immunology , Immune Tolerance , Oncolytic Virotherapy/methods , Oncolytic Viruses , Vaccinia virus/physiology , A549 Cells , Adaptive Immunity/physiology , Adipose Tissue/immunology , Adult Stem Cells/immunology , Adult Stem Cells/virology , Allogeneic Cells/cytology , Animals , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Cells, Cultured , Chlorocebus aethiops , Humans , Immunity, Innate/physiology , Immunomodulation/physiology , Immunotherapy, Adoptive/methods , K562 Cells , Mice , Oncolytic Viruses/immunology , Transplantation, Homologous/methods , Vaccinia virus/immunology
5.
Clin Transl Med ; 7(1): 5, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29417261

ABSTRACT

BACKGROUND: Stromal vascular fraction (SVF) represents an attractive source of adult stem cells and progenitors, holding great promise for numerous cell therapy approaches. In 2017, it was reported that 1524 patients received autologous SVF following the enzymatic digestion of liposuction fat. The treatment was safe and effective and patients showed significant clinical improvement. In a collaborative study, we analyzed SVF obtained from 58 patients having degenerative, inflammatory, autoimmune diseases, and advanced stage cancer. RESULTS: Flow analysis showed that freshly isolated SVF was very heterogeneous and harbored four major subsets specific to adipose tissue; CD34high CD45- CD31- CD146- adipose-derived stromal/stem cells (ADSCs), CD34low CD45+ CD206+CD31- CD146- hematopoietic stem cell-progenitors (HSC-progenitors), CD34high CD45- CD31+CD146+ adipose tissue-endothelial cells and CD45-CD34-CD31-CD146+ pericytes. Culturing and expanding of SVF revealed a homogenous population lacking hematopoietic lineage markers CD45 and CD34, but were positive for CD90, CD73, CD105, and CD44. Flow cytometry sorting of viable individual subpopulations revealed that ADSCs had the capacity to grow in adherent culture. The identity of the expanded cells as mesenchymal stem cells (MSCs) was further confirmed based on their differentiation into adipogenic and osteogenic lineages. To identify the potential factors, which may determine the beneficial outcome of treatment, we followed 44 patients post-SVF treatment. The gender, age, clinical condition, certain SVF-dose and route of injection, did not play a role on the clinical outcome. Interestingly, SVF yield seemed to be affected by patient's characteristic to various extents. Furthermore, the therapy with adipose-derived and expanded-mesenchymal stem cells (ADE-MSCs) on a limited number of patients, did not suggest increased efficacies compared to SVF treatment. Therefore, we tested the hypothesis that a certain combination, rather than individual subset of cells may play a role in determining the treatment efficacy and found that the combination of ADSCs to HSC-progenitor cells can be correlated with overall treatment efficacy. CONCLUSIONS: We found that a 2:1 ratio of ADSCs to HSC-progenitors seems to be the key for a successful cell therapy. These findings open the way to future rational design of new treatment regimens for individuals by adjusting the cell ratio before the treatment.

6.
Cell Immunol ; 310: 205-210, 2016 12.
Article in English | MEDLINE | ID: mdl-27593154

ABSTRACT

Innate immune responses to dsRNA result in signaling through the TLR3 pathway and/or the RIG-I/MDA-5/MAVS pathway which can activate type I IFN, proinflammatory cytokines and apoptosis. It is not clear whether MAVS could play a role in TLR3-dependent responses to extracellular dsRNA. Using a model of epithelial cells that express a functional TLR3 signaling pathway, we found that TLR3-dependent responses to extracellular dsRNA are negatively regulated by MAVS, precisely "miniMAVS", a recently described 50kDa isoform of MAVS. This regulation of TLR3 by a MAVS isoform constitutes an endogenous regulatory mechanism in epithelial cells that could help prevent a potentially damaging excessive inflammatory response.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epithelial Cells/physiology , Protein Isoforms/metabolism , Toll-Like Receptor 3/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis , HCT116 Cells , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , NF-kappa B/metabolism , Poly I-C/immunology , Protein Isoforms/genetics , RNA, Small Interfering/genetics , Signal Transduction , Toll-Like Receptor 3/genetics
7.
J Leukoc Biol ; 99(3): 475-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26467188

ABSTRACT

The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections/immunology , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Programmed Cell Death 1 Receptor/physiology , Animals , Colon/immunology , Female , Granzymes/biosynthesis , Interferon-gamma/biosynthesis , Male , Mice , Mice, Inbred C57BL , Perforin/biosynthesis , Signal Transduction
8.
J Immunol ; 190(4): 1702-13, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23325885

ABSTRACT

GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, as well as dendritic cell differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn's disease in humans and colitis in murine models has mainly been considered to reflect its activity on myeloid cells. We used GM-CSF-deficient (GM-CSF(-/-)) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS), at doses that resulted in little epithelial damage and mucosal ulceration in wild type mice, caused marked colon ulceration and delayed ulcer healing in GM-CSF(-/-) mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF(-/-) mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF(-/-) mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Nonhematopoietic cells, and not myeloid cells, produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury, as revealed by bone marrow chimera and dendritic cell-depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell-produced GM-CSF has a novel nonredundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium.


Subject(s)
Bone Marrow Cells/immunology , Cell Proliferation , Colitis, Ulcerative/immunology , Colitis, Ulcerative/therapy , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/radiation effects , Colitis, Ulcerative/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/deficiency , Hematopoiesis/genetics , Hematopoiesis/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Radiation Chimera , Time Factors , Wound Healing/genetics , Wound Healing/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...