Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674943

ABSTRACT

The entanglement of fibers can form physical and topological structures, with the resulting bending and stretching strains causing localized changes in pressure. In this study, a multi-layer polyurethane-fiber-prepared (MPF) sensor was developed by coating the CNT/PU sensing layer on the outside of an elastic electrode through a wet-film method. The entangled topology of two MPFs was utilized to convert the stretching strain into localized pressure at the contact area, enabling the perception of stretching strain. The influence of coating mechanical properties and surface structure on strain sensing performance was investigated. A force regulator was introduced to regulate the mechanical properties of the entangled topology of MPF. By modifying the thickness and length proportion of the force regulator, the sensitivity factor and sensitivity range of the sensor could be controlled, achieving a high sensitivity factor of up to 127.74 and a sensitivity range of up to 58%. Eight sensors were integrated into a sensor array and integrated into a dance costume, successfully monitoring the multi-axis motion of the dancer's lumbar spine. This provides a new approach for wearable biomechanical sensors.

2.
ACS Appl Mater Interfaces ; 13(44): 52901-52911, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34699163

ABSTRACT

The tremendous progress of the wearable intelligent system has brought an urgent demand for flexible pressure sensors, especially for those possessing high sensing performances, simple manufacture technology, and efficient integration. In this work, hierarchical core-shell piezoresistive yarns (HCPYs), which contain internal silver-plated nylon electrodes and surface microporous structured carbon nanotubes (CNTs)/thermoplastic polyurethane (TPU) sensing layer, are designed and manufactured via facile wet-spinning accompanied by a water vapor coagulating bath. The obtained HCPY can either be inserted into traditional textiles to assemble a single-pressure sensor, or be woven into a textile-based flexible pressure sensors array with expected size and resolution, without compromising their comfort, breathability, and three-dimensional (3D) conformability. Simultaneously, to further enhance the sensing performance, the surface microporous structures of HCPYs are optimized by altering the treatment humidity and exposure time during the process of water vapor-induced phase separation. The wearable pressure sensors assembled by the optimal HCPY achieved a high sensitivity up to 84.5 N-1, a good durability over 5000-cycle tests, a fast response time of 2.1 ms, and a recovery time of 2.4 ms. Moreover, the wearable pressure sensors have been successfully used to monitor physical signals and human motions. The textile-based flexible pressure sensors array has also been seamlessly integrated with sportswear to detect movements of the elbow joint and map spatial pressure distribution, which makes HCPY a promising candidate for constructing next-generation wearable electronics.

SELECTION OF CITATIONS
SEARCH DETAIL