Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 253, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322206

ABSTRACT

Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms' behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.


Subject(s)
Caenorhabditis elegans , Light , Animals , Caenorhabditis elegans/genetics , Phenotype
2.
Mol Syst Biol ; 17(5): e10267, 2021 05.
Article in English | MEDLINE | ID: mdl-34031985

ABSTRACT

Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/physiology , Insecticides/pharmacology , Systems Biology/methods , Animals , Anthelmintics/chemistry , Anthelmintics/classification , Automation , Behavior, Animal/drug effects , Caenorhabditis elegans/drug effects , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Insecticides/chemistry , Insecticides/classification , Molecular Structure , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...