Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401606, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801240

ABSTRACT

The development of novel antivirals is crucial not only for managing current COVID-19 infections but for addressing potential future zoonotic outbreaks. SARS-CoV-2 main protease (Mpro) is vital for viral replication and viability and therefore serves as an attractive target for antiviral intervention. Herein, we report the optimization of a cyclic peptide inhibitor that emerged from an mRNA display selection against the SARS-CoV-2 Mpro to enhance its cell permeability and in vitro antiviral activity. By identifying mutation-tolerant amino acid residues within the peptide sequence, we describe the development of a second-generation Mpro inhibitor bearing five cyclohexylalanine residues. This cyclic peptide analogue exhibited significantly improved cell permeability and antiviral activity compared to the parent peptide. This approach highlights the importance of optimizing cyclic peptide hits for activity against intracellular targets such as the SARS-CoV-2 Mpro.

2.
J Med Chem ; 64(11): 7853-7876, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34044534

ABSTRACT

The contact system comprises a series of serine proteases that mediate procoagulant and proinflammatory activities via the intrinsic pathway of coagulation and the kallikrein-kinin system, respectively. Inhibition of Factor XIIa (FXIIa), an initiator of the contact system, has been demonstrated to lead to thrombo-protection and anti-inflammatory effects in animal models and serves as a potentially safer target for the development of antithrombotics. Herein, we describe the use of the Randomised Nonstandard Peptide Integrated Discovery (RaPID) mRNA display technology to identify a series of potent and selective cyclic peptide inhibitors of FXIIa. Cyclic peptides were evaluated in vitro, and three lead compounds exhibited significant prolongation of aPTT, a reduction in thrombin generation, and an inhibition of bradykinin formation. We also describe our efforts to identify the critical residues for binding FXIIa through alanine scanning, analogue generation, and via in silico methods to predict the binding mode of our lead cyclic peptide inhibitors.


Subject(s)
Factor XIIa/antagonists & inhibitors , Peptides, Cyclic/chemistry , RNA, Messenger/metabolism , Serine Proteinase Inhibitors/chemistry , Binding Sites , Factor XIIa/metabolism , Gene Library , Genetic Code , Humans , Inhibitory Concentration 50 , Kallikreins/chemistry , Kallikreins/metabolism , Molecular Dynamics Simulation , Partial Thromboplastin Time , Peptides, Cyclic/metabolism , Protein Stability , Prothrombin Time , Puromycin/chemistry , RNA, Messenger/chemistry , Serine Proteinase Inhibitors/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...