Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Eur J Clin Invest ; : e14223, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623918

ABSTRACT

BACKGROUND: Personalized medicine represents a novel and integrative approach that focuses on an individual's genetics and epigenetics, precision medicine, lifestyle and exposures as key players of health status and disease phenotypes. METHODS: In this narrative review, we aim to carefully discuss the current knowledge on gender disparities in cardiometabolic diseases, and we consider the sex- specific expression of miRNAs and their role as promising tool in precision medicine. RESULTS: Personalised medicine overcomes the restricted care of patient based on a binomial sex approach, by enriching itself with a holistic and dynamic gender integration. Recognized as a major worldwide health emergency, cardiometabolic disorders continue to rise, impacting on health systems and requiring more effective and targeted strategies. Several sex and gender drivers might affect the onset and progression of cardiometabolic disorders in males and females at multiple levels. In this respect, distinct contribution of genetic and epigenetic mechanisms, molecular and physiological pathways, sex hormones, visceral fat and subcutaneous fat and lifestyle lead to differences in disease burden and outcomes in males and females. CONCLUSIONS: Sex and gender play a pivotal role in precision medicine because the influence the physiology of each individual and the way they interact with environment from intrauterine life.

3.
Eur J Intern Med ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37981527

ABSTRACT

INTRODUCTION: Differential expression of long non-coding RNAs (lncRNAs) is a hallmark of cardiovascular aging, cerebrovascular diseases, and neurodegenerative disorders. This research article investigates the association between a panel of lncRNAs and the risk of death and ischemic stroke in a cohort of non-institutionalized elderly subjects. METHOD: A total of 361 healthy individuals aged 75 years old, prospectively recruited in the Vienna Transdanube Aging (VITA) cohort, were included. Expression of lncRNAs at baseline was assessed using quantitative polymerase chain reaction PCR with pre-amplification reaction, using 18S for normalization. The primary endpoint was all-cause mortality; the secondary endpoint was the incidence of new ischemic brain lesions. Death was assessed over a 14-year follow-up, and ischemic brain lesions were evaluated by magnetic resonance imaging (MRI) over a 90-month follow-up. Ischemic brain lesions were divided into large brain infarcts (Ø≥ 1.5 cm) or lacunes (Ø< 1.5 cm) RESULTS: The primary endpoint occurred in 53.5 % of the study population. The incidence of the secondary endpoint was 16 %, with a 3.3 % being large brain infarcts, and a 12.7 % lacunes. After adjustment for potential confounders, the lncRNA H19 predicted the incidence of the primary endpoint (HR 1.194, 95 % C.I. 1.012-1.409, p = 0.036), whereas the lncRNA NKILA was associated with lacunar stroke (HR 0.571, 95 % C.I. 0.375-0.868, p = 0.006). CONCLUSION: In a prospective cohort of non-institutionalized elderly subjects, high levels of lncRNA H19 are associated with a higher risk of death, while low levels of lncRNA NKILA predict an increased risk of lacunar stroke.

4.
Vascul Pharmacol ; 153: 107170, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37659608

ABSTRACT

AIMS: Despite advances in pharmacotherapy and device innovation, in-stent restenosis (ISR) and stent thrombosis (ST) remain serious complications following percutaneous coronary intervention (PCI) procedure with stent implantation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme involved in plasma cholesterol homeostasis and recently emerged as a therapeutic target for hypercholesterolemia. Antibody-based PCSK9 inhibition is increasingly used in different subsets of patients, including those undergoing PCI. However, whether PCSK9 inhibition affects outcome after stent implantation remains unknown. METHODS AND RESULTS: 12 to 14 weeks old C57Bl/6 mice underwent carotid artery bare-metal stent implantation. Compared to sham intervention, stent implantation was associated with increased expression of several inflammatory mediators, including PCSK9. The increase in PCSK9 protein expression was confirmed in the stented vascular tissue, but not in plasma. To inhibit PCSK9, alirocumab was administered weekly to mice before stent implantation. After 6 weeks, histological examination revealed increased intimal hyperplasia in the stented segment of alirocumab-treated animals compared to controls. In vitro, alirocumab promoted migration and inhibited the onset of senescence in primary human vascular smooth muscle cells (VSMC). Conversely, it blunted the migration and increased the senescence of endothelial cells (EC). CONCLUSION: Antibody-based PCSK9 inhibition promotes in-stent intimal hyperplasia and blunts vascular healing by increasing VSMC migration, while reducing that of EC. This effect is likely mediated, at least in part, by a differential effect on VSMC and EC senescence. The herein-reported data warrant additional investigations concerning the use of PCSK9 inhibitors in patients undergoing PCI with stent implantation.


Subject(s)
Percutaneous Coronary Intervention , Proprotein Convertase 9 , Humans , Animals , Mice , Proprotein Convertase 9/metabolism , Percutaneous Coronary Intervention/adverse effects , Hyperplasia/etiology , Endothelial Cells/metabolism , Stents
5.
Diabetes Res Clin Pract ; 203: 110885, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37598938

ABSTRACT

Diabetic cardiomyopathy (DbCM) is characterized by restrictive pattern and consistent risk of overt heart failure. We here focused osteopontin (OPN), which was tested independently associated with left ventricular diastolic dysfunction (LVDD). Overall, OPN increased with DbCM severity according with the presence of left atrial dilatation, LV hypertrophy and LVDD.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Heart Failure , Ventricular Dysfunction, Left , Humans , Osteopontin , Ventricular Dysfunction, Left/etiology , Heart Failure/complications , Diastole
6.
Eur Heart J ; 44(38): 3859-3871, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37632743

ABSTRACT

BACKGROUND AND AIMS: Dipeptidyl peptidase 3 (DPP3) is a protease involved in the degradation of angiotensin II which disturbs peripheral blood pressure regulation and compromises left ventricular function. This study examined the relationship of circulating DPP3 (cDPP3) with cardiogenic shock (CS) and mortality in patients presenting with acute coronary syndromes (ACS). METHODS: Plasma cDPP3 levels were assessed at baseline and 12-24 h after presentation in patients with ACS prospectively enrolled into the multi-centre SPUM-ACS study (n = 4787). RESULTS: Circulating DPP3 levels were associated with in-hospital CS when accounting for established risk factors including the ORBI risk score [per log-2 increase, hazard ratio (HR) 1.38, 95% confidence interval (CI) 1.05-1.82, P = .021]. High cDPP3 was an independent predictor of mortality at 30 days (HR 1.87, 95% CI 1.36-2.58, P < .001) and at one year (HR 1.61, 95% CI 1.28-2.02, P < .001) after adjustment for established risk factors and the GRACE 2.0 score. Compared to values within the normal range, persistently elevated cDPP3 levels at 12-24 h were associated with 13.4-fold increased 30-day mortality risk (HR 13.42, 95% CI 4.86-37.09, P < .001) and 5.8-fold increased 1-year mortality risk (HR 5.79, 95% CI 2.70-12.42, P < .001). Results were consistent across various patient subgroups. CONCLUSIONS: This study identifies cDPP3 as a novel marker of CS and increased mortality in patients with ACS. Circulating DPP3 offers prognostic information beyond established risk factors and improves early risk assessment.


Subject(s)
Acute Coronary Syndrome , Shock, Cardiogenic , Humans , Shock, Cardiogenic/etiology , Acute Coronary Syndrome/complications , Prognosis , Risk Factors , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases
7.
Front Public Health ; 11: 1169073, 2023.
Article in English | MEDLINE | ID: mdl-37151587

ABSTRACT

Background: Spore Trap is an environmental detection technology, already used in the field of allergology to monitor the presence and composition of potentially inspirable airborne micronic bioparticulate. This device is potentially suitable for environmental monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in hospital, as well as in other high-risk closed environments. The aim of the present study is to investigate the accuracy of the Spore Trap system in detecting SARS-CoV-2 in indoor bioaerosol of hospital rooms. Methods: The Spore Trap was placed in hospital rooms hosting patients with documented SARS-CoV-2 infection (n = 36) or, as a negative control, in rooms where patients with documented negativity to a Real-Time Polymerase Chain Reaction molecular test for SARS-CoV-2 were admitted (n = 10). The monitoring of the bioaerosol was carried on for 24 h. Collected samples were analyzed by real-time polymerase chain reaction. Results: The estimated sensitivity of the Spore Trap device for detecting SARS-CoV-2 in an indoor environment is 69.4% (95% C.I. 54.3-84.4%), with a specificity of 100%. Conclusion: The Spore Trap technology is effective in detecting airborne SARS-CoV-2 virus with excellent specificity and high sensitivity, when compared to previous reports. The SARS-CoV-2 pandemic scenario has suggested that indoor air quality control will be a priority in future public health management and will certainly need to include an environmental bio-investigation protocol.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Hospitals , Pandemics , Hospitalization
8.
Intern Emerg Med ; 18(5): 1509-1519, 2023 08.
Article in English | MEDLINE | ID: mdl-36943596

ABSTRACT

Unmet needs challenge clinical management of sepsis especially concerning patient profiling, enhancing recovery, and long-term sequelae. Here, we preliminarily focused on sclerostin (SOST) as a candidate biomarker to encompass such a broad range of clinical needs related to sepsis. Seventy-three septic patients were enrolled at internal medicine wards between January 2017 and December 2019 in this pilot study. Clinical examination and blood sample analyses were collected at enrollment and after 7 and 14 days. SOST levels were assessed on serum by ELISA. Thirty-day mortality was set as primary outcome. In-hospital and long-term mortality (2.5 years of median follow-up) were assessed as secondary outcomes. Patients were frail, elderly, and heterogeneous in terms of comorbidity burden. SOST levels were associated with age, cardiovascular comorbidities, and time to early death (30 days). When regression models were built, SOST displayed a high predictive value toward 30-day mortality (OR 13.459 with 95% CI 1.226-148.017) with ever better performance than validated scoring scales for critical ill patients. Such a predictive value of SOST was further confirmed for in-hospital (HR 10.089 with 95% CI 1.375-74.013) and long-term mortality (HR 5.061 with 95% CI 1.379-18.570). SOST levels generally decreased over 7 to 14 days after enrollment (p for trend < 0.001). The degree of this variation further predicted long-term mortality (HR for Δ SOST T0-day 14: 1.006 with 95% CI 1.001-1.011). Our results suggest a role for SOST in both short- and long-time prediction of worse outcome in septic elderly admitted to internal medicine wards.


Subject(s)
Frail Elderly , Sepsis , Humans , Aged , Infant , Pilot Projects , Biomarkers , Hospitalization , Hospital Mortality
9.
Front Bioeng Biotechnol ; 11: 1094397, 2023.
Article in English | MEDLINE | ID: mdl-36845196

ABSTRACT

The healthy human heart has special directional arrangement of cardiomyocytes and a unique electrical conduction system, which is critical for the maintenance of effective contractions. The precise arrangement of cardiomyocytes (CMs) along with conduction consistency between CMs is essential for enhancing the physiological accuracy of in vitro cardiac model systems. Here, we prepared aligned electrospun rGO/PLCL membranes using electrospinning technology to mimic the natural heart structure. The physical, chemical and biocompatible properties of the membranes were rigorously tested. We next assembled human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on electrospun rGO/PLCL membranes in order to construct a myocardial muscle patch. The conduction consistency of cardiomyocytes on the patches were carefully recorded. We found that cells cultivated on the electrospun rGO/PLCL fibers presented with an ordered and arranged structure, excellent mechanical properties, oxidation resistance and effective guidance. The addition of rGO was found to be beneficial for the maturation and synchronous electrical conductivity of hiPSC-CMs within the cardiac patch. This study verified the possibility of using conduction-consistent cardiac patches to enhance drug screening and disease modeling applications. Implementation of such a system could one day lead to in vivo cardiac repair applications.

11.
Eur Heart J ; 44(20): 1818-1833, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36469488

ABSTRACT

AIMS: Variants of the junctional cadherin 5 associated (JCAD) locus associate with acute coronary syndromes. JCAD promotes experimental atherosclerosis through the large tumor suppressor kinase 2 (LATS2)/Hippo pathway. This study investigates the role of JCAD in arterial thrombosis. METHODS AND RESULTS: JCAD knockout (Jcad-/-) mice underwent photochemically induced endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) treated with JCAD small interfering RNA (siJCAD), LATS2 small interfering RNA (siLATS2) or control siRNA (siSCR) were employed for in vitro assays. Plasma JCAD was measured in patients with chronic coronary syndrome or ST-elevation myocardial infarction (STEMI). Jcad-/- mice displayed reduced thrombogenicity as reflected by delayed time to carotid occlusion. Mechanisms include reduced activation of the coagulation cascade [reduced tissue factor (TF) expression and activity] and increased fibrinolysis [higher thrombus embolization episodes and D-dimer levels, reduced vascular plasminogen activator inhibitor (PAI)-1 expression]. In vitro, JCAD silencing inhibited TF and PAI-1 expression in HAECs. JCAD-silenced HAECs (siJCAD) displayed increased levels of LATS2 kinase. Yet, double JCAD and LATS2 silencing did not restore the control phenotype. si-JCAD HAECs showed increased levels of phosphoinositide 3-kinases (PI3K)/ proteinkinase B (Akt) activation, known to downregulate procoagulant expression. The PI3K/Akt pathway inhibitor-wortmannin-prevented the effect of JCAD silencing on TF and PAI-1, indicating a causative role. Also, co-immunoprecipitation unveiled a direct interaction between JCAD and Akt. Confirming in vitro findings, PI3K/Akt and P-yes-associated protein levels were higher in Jcad-/- animals. Lastly, as compared with chronic coronary syndrome, STEMI patients showed higher plasma JCAD, which notably correlated positively with both TF and PAI-1 levels. CONCLUSIONS: JCAD promotes arterial thrombosis by modulating coagulation and fibrinolysis. Herein, reported translational data suggest JCAD as a potential therapeutic target for atherothrombosis.


Subject(s)
ST Elevation Myocardial Infarction , Thrombosis , Animals , Humans , Mice , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Signal Transduction , ST Elevation Myocardial Infarction/metabolism , Thrombosis/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
12.
Cardiovasc Res ; 119(3): 843-856, 2023 05 02.
Article in English | MEDLINE | ID: mdl-35993135

ABSTRACT

AIMS: Low-grade inflammation couples dysmetabolic states to insulin resistance and atherosclerotic cardiovascular (CV) disease (ASCVD). Selective sodium-glucose co-transporter 2 (SGLT-2) inhibition by empagliflozin improves clinical outcomes in patients with ASCVD independently of its glucose lowering effects. Yet, its mechanism of action remains largely undetermined. Here, we aimed to test whether empagliflozin affects arterial thrombus formation in baseline (BSL) conditions or low-grade inflammatory states, a systemic milieu shared among patients with ASCVD. METHODS AND RESULTS: Sixteen-week-old C57BL/6 mice were randomly assigned to acute administration of empagliflozin (25 mg/kg body weight) or vehicle, of which a subgroup was pre-treated biweekly over 4 weeks with super-low-dose lipopolysaccharide (LPS; 5 ng/kg body weight), before carotid thrombosis was induced by photochemical injury. The between-group difference in Doppler-flow probe detected time-to-occlusion remained within the predefined equivalence margin (Δ = |10.50|), irrespective of low-grade inflammation (95% confidence interval, -9.82 to 8.85 and -9.20 to 9.69), while glucose dropped by 1.64 and 4.84 mmoL/L, respectively. Ex vivo platelet aggregometry suggested similar activation status, corroborated by unchanged circulating platelet-factor 4 plasma levels. In concert, carotid PAI-1 expression and tissue factor (TF) activity remained unaltered upon SGLT-2 inhibition, and no difference in plasma D-dimer levels was detected, suggesting comparable coagulation cascade activation and fibrinolytic activity. In human aortic endothelial cells pre-treated with LPS, empagliflozin neither changed TF activity nor PAI-1 expression. Accordingly, among patients with established ASCVD or at high CV risk randomized to a daily dose of 10 mg empagliflozin signatures of thrombotic (i.e. TF) and fibrinolytic activity (i.e. PAI-1) remained unchanged, while plasma glucose declined significantly during 3 months of follow-up. CONCLUSION: SGLT-2 inhibition by empagliflozin does not impact experimental arterial thrombus formation, neither under BSL conditions nor during sustained low-grade inflammation, and has no impact on proxies of thrombotic/fibrinolytic activity in patients with ASCVD. The beneficial pleiotropic effects of empagliflozin are likely independent of pathways mediating arterial thrombosis.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Thrombosis , Humans , Mice , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Disease Models, Animal , Endothelial Cells , Sodium-Glucose Transporter 2 , Lipopolysaccharides/therapeutic use , Plasminogen Activator Inhibitor 1 , Mice, Inbred C57BL , Thrombosis/chemically induced , Thrombosis/drug therapy , Thrombosis/prevention & control , Glucose , Inflammation/drug therapy , Body Weight , Diabetes Mellitus, Type 2/drug therapy
13.
Sci Rep ; 12(1): 20513, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443316

ABSTRACT

In a murine model of acute ischemic stroke, SIRT6 knockdown resulted in larger cerebral infarct size, worse neurological outcome, and higher mortality, indicating a possible neuro-protective role of SIRT6. In this study, we aimed at evaluating the prognostic value of serum SIRT6 levels in patients with acute ischemic stroke (AIS). Serum levels of SIRT6, collected within 72 h from symptom-onset, were measured in 317 consecutively enrolled AIS patients from the COSMOS cohort. The primary endpoint of this analysis was 90-day mortality. The independent prognostic value of SIRT6 was assessed with multivariate logistic and Cox proportional regression models. 35 patients (11%) deceased within 90-day follow-up. After adjustment for established risk factors (age, NIHSS, heart failure, atrial fibrillation, and C reactive protein), SIRT6 levels were negatively associated with mortality. The optimal cut-off for survival was 634 pg/mL. Patients with SIRT6 levels below this threshold had a higher risk of death in multivariable Cox regression. In this pilot study, SIRT6 levels were significantly associated with 90-day mortality after AIS; these results build on previous molecular and causal observations made in animal models. Should this association be confirmed, SIRT6 could be a potential prognostic predictor and therapeutic target in AIS.


Subject(s)
Atrial Fibrillation , Ischemic Stroke , Sirtuins , Animals , Mice , Cerebral Infarction , Glycosyltransferases , Pilot Projects
14.
Intern Emerg Med ; 17(8): 2269-2277, 2022 11.
Article in English | MEDLINE | ID: mdl-36044159

ABSTRACT

Deep vein thrombosis (DVT) in critically ill patients still represents a clinical challenge. The aim of the study was to investigate whether a systematic ultrasound (US) screening might improve the management of the antithrombotic therapy in intensive care unit (ICU). In this non-randomized diagnostic clinical trial, 100 patients consecutively admitted to ICU of the University Hospital of Perugia were allocated either in the screening group or in the control group. Subjects in the screening group underwent US examination of lower limbs 48 h after admission, and again after 5 days. Subjects in the control group underwent US examination according to the standard of care (SOC) of the enrolling institution. Retrospectively registered at ClinicalTrials.gov (NCT05019092) on 24.08.2021. Lower limb DVT was significantly more frequent in the screening group (p < 0.001), as well as the subsequent extension of a pre-existing DVT (p = 0.027). In the control group, DVT of large veins was more frequent (p = 0.038). Major bleedings were reported in 5 patients, 4 in the non-screening group and in 1 in the screening group. Patients in the screening group started the antithrombotic treatment later (p = 0.038), although the frequency, dose and duration of the treatment were not different between the two groups. The duration of stay in ICU was longer in the screening group (p = 0.007). Active screening for DVT is associated with an increased diagnosis of DVT. The screening could be associated with a reduced incidence of proximal DVT and a reduction in the bleeding risk.


Subject(s)
Critical Illness , Venous Thrombosis , Humans , Pilot Projects , Risk Factors , Venous Thrombosis/etiology , Intensive Care Units
15.
Front Cell Dev Biol ; 10: 882211, 2022.
Article in English | MEDLINE | ID: mdl-35663390

ABSTRACT

The improvements in healthcare services and quality of life result in a longer life expectancy and a higher number of aged individuals, who are inevitably affected by age-associated cardiovascular (CV) diseases. This challenging demographic shift calls for a greater effort to unravel the molecular mechanisms underlying age-related CV diseases to identify new therapeutic targets to cope with the ongoing aging "pandemic". Essential for protection against external pathogens and intrinsic degenerative processes, the inflammatory response becomes dysregulated with aging, leading to a persistent state of low-grade inflammation known as inflamm-aging. Of interest, inflammation has been recently recognized as a key factor in the pathogenesis of CV diseases, suggesting inflamm-aging as a possible driver of age-related CV afflictions and a plausible therapeutic target in this context. This review discusses the molecular pathways underlying inflamm-aging and their involvement in CV disease. Moreover, the potential of several anti-inflammatory approaches in this context is also reviewed.

18.
Cardiovasc Res ; 118(10): 2385-2396, 2022 07 27.
Article in English | MEDLINE | ID: mdl-34586381

ABSTRACT

AIMS: Arterial stiffness is a hallmark of vascular ageing that precedes and strongly predicts the development of cardiovascular diseases. Age-dependent stiffening of large elastic arteries is primarily attributed to increased levels of matrix metalloproteinase-2 (MMP-2). However, the mechanistic link between age-dependent arterial stiffness and MMP-2 remains unclear. Thus, we aimed to investigate the efficacy of MMP-2 knockdown using small-interfering RNA (siRNA) on age-dependent arterial stiffness. METHODS AND RESULTS: Pulse wave velocity (PWV) was assessed in right carotid artery of wild-type (WT) mice from different age groups. MMP-2 levels in the carotid artery and plasma of young (3 months) and old (20-25 months) WT mice were determined. Carotid PWV as well as vascular and circulating MMP-2 were elevated with increasing age in mice. Old WT mice (18- to 21-month old) were treated for 4 weeks with either MMP-2 or scrambled (Scr) siRNA via tail vein injection. Carotid PWV was assessed at baseline, 2 and 4 weeks after start of the treatment. MMP-2 knockdown reduced vascular MMP-2 levels and attenuated age-dependent carotid stiffness. siMMP-2-treated mice showed increased elastin-to-collagen ratio, lower plasma desmosine (DES), enhanced phosphorylation of endothelial nitric oxide synthase (eNOS), and higher levels of vascular cyclic guanosine monophosphate (cGMP). An age-dependent increase in direct protein-protein interaction between MMP-2 and eNOS was also observed. Lastly, DES, an elastin breakdown product, was measured in a patient cohort (n = 64, 23-86 years old), where carotid-femoral PWV was also assessed; here, plasma levels of DES directly correlated with age and arterial stiffness. CONCLUSION: MMP-2 knockdown attenuates age-dependent carotid stiffness by blunting elastin degradation and augmenting eNOS bioavailability. Given the increasing clinical use of siRNA technology, MMP2 knockdown should be investigated further as a possible strategy to mitigate age-dependent arterial stiffness and related CV diseases.


Subject(s)
Cardiovascular Diseases , Matrix Metalloproteinase 2/metabolism , Vascular Stiffness , Animals , Carotid Arteries/metabolism , Elastin/metabolism , Humans , Matrix Metalloproteinase 2/genetics , Mice , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Pulse Wave Analysis , RNA, Small Interfering
19.
Eur J Clin Invest ; 52(1): e13668, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34390488

ABSTRACT

BACKGROUND: High circulating levels of cellular adhesion molecules (CAMs) in non-small cell lung cancer (NSCLC) have been supposed to act as a negative prognostic factor. Here, we explored the predictive role of pre-treatment levels of CAMs in previously treated patients receiving nivolumab for NSCLC. MATERIALS AND METHODS: Seventy one patients with advanced NSCLC, treated with nivolumab at the dose of 3 mg/kg every 14 days, were enrolled. Maximum follow-up time was 3 years. Serum levels of Vascular Cell Adhesion Molecule-1 (VCAM-1) and Intracellular Adhesion Molecule-1 (ICAM-1) were measured at baseline and before each nivolumab administration. Endpoints of the study were a composite outcome of survival ≥2 years or absence of disease progression at the end of the follow-up, and the overall survival. RESULTS: Composite outcome and overall survival were positively associated with VCAM-1 baseline levels and with the reduction of VCAM-1 during the treatment. After adjustment for potential confounders, the change in VCAM-1 serum levels during the treatment was an independent predictor of overall survival. CONCLUSIONS: High baseline serum levels of VCAM-1 are associated with a longer survival in patients treated with nivolumab as second line treatment for NSCLC. Surviving patients experience also a significant reduction in CAMs expression during the treatment. Hence, CAMs might be promising prognostic factors in patients with NSCLC underoing immunotherapy.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/blood supply , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Nivolumab/therapeutic use , Vascular Cell Adhesion Molecule-1/blood , Aged , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Survival Rate
20.
Curr Med Chem ; 29(6): 970-979, 2022.
Article in English | MEDLINE | ID: mdl-34375179

ABSTRACT

Despite a clear epidemiological link between autoimmune disease and cardiovascular (CV) risk exists, pathophysiological explanations are extremely complex and far from being elucidated. Dysregulation of metabolic pathways and chronic low-grade inflammation represent common pathways, but CV risk still remains underestimated in patients with autoimmune diseases. Among different candidate mediators, pro-protein convertase subtilisin/kexin type 9 (PCSK9) is attracting growing attention, due to a combined effect on lipid metabolism and inflammatory response. Studies on PCSK9 inhibitors have established a clear benefit on CV outcome without an established effect on inflammation. Conversely, evidence from sepsis and HIV infection strongly supports a pro-inflammatory role of PCSK9. Still, the role of PCSK9 in autoimmune diseases is uncertain. So far, reported clinical findings are controversial and likely reflect the poor knowledge of PCSK9 activity on monocyte/macrophage migration and activation. The complex signaling network around PCSK9 synthesis and metabolism may also have a role, especially concerning the involvement of scavenger receptors, such as CD36. Such complexity in PCSK9 signaling seems particularly evident in autoimmune disease model. This would also potentially explain the observed independency between lipid profile and PCSK9 levels, the so-called "lipid paradox". In this narrative review, we will summarize the current knowledge about the complex network of PCSK9 signaling. We will focus on upstream and downstream pathways with potential implication in autoimmune disease and potential effects of PCSK9 inhibiting strategies.


Subject(s)
Arthritis, Rheumatoid , HIV Infections , Lupus Erythematosus, Systemic , Arthritis, Rheumatoid/drug therapy , Humans , Inflammation , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/drug therapy , Proprotein Convertase 9/metabolism , Subtilisin
SELECTION OF CITATIONS
SEARCH DETAIL
...