Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Commun Med (Lond) ; 4(1): 63, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575714

ABSTRACT

BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.


It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.

2.
Sci Rep ; 14(1): 3000, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321133

ABSTRACT

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Subject(s)
COVID-19 , Humans , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , SARS-CoV-2 , Genotype
3.
Pediatr Blood Cancer ; : e30501, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37338505

ABSTRACT

INTRODUCTION: Osteosarcoma (OS) is a rare pediatric cancer for which therapeutic approaches, including chemotherapy and surgery, show a wide interindividual variability in patient response, both in terms of adverse events and therapy efficacy. There is growing evidence that this individual variable response to therapies is also influenced by inherited genetic variations. However, the results obtained to date in these pediatric cancers have been contradictory and often lack validation in independent series. Additionally, these studies frequently focused only on a limited number of polymorphisms in candidate genes. METHODS: In order to identify germline coding variations associated with individual differences in adverse events occurrence in pediatric patients affected by localized OS, we carried out an exome-wide association study in 24 OS patients treated with methotrexate, cisplatin, and doxorubicin, using the SNP-Set (Sequence) Kernel Association Test (SKAT), optimized for small sample size. RESULTS: Gene sets significantly associated (FDR < .05) with neutropenia and hepatotoxicity induced by methotrexate were identified. Some of the identified genes map in loci previously associated with similar phenotypes (e.g., leukocyte count, alkaline phosphatase levels). CONCLUSION: Further studies in larger series and with functional characterization of the identified associations are needed; nonetheless, this pilot study prompts the relevance of broadly investigating variants along the whole genome, to identify new potential pharmacogenes, beyond drug metabolism, transport, and receptor candidate genes.

4.
Cancer Sci ; 114(1): 281-294, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36114746

ABSTRACT

Emerging evidence suggests that the prognosis of patients with lung adenocarcinoma can be determined from germline variants and transcript levels in nontumoral lung tissue. Gene expression data from noninvolved lung tissue of 483 lung adenocarcinoma patients were tested for correlation with overall survival using multivariable Cox proportional hazard and multivariate machine learning models. For genes whose transcript levels are associated with survival, we used genotype data from 414 patients to identify germline variants acting as cis-expression quantitative trait loci (eQTLs). Associations of eQTL variant genotypes with gene expression and survival were tested. Levels of four transcripts were inversely associated with survival by Cox analysis (CLCF1, hazard ratio [HR] = 1.53; CNTNAP1, HR = 2.17; DUSP14, HR = 1.78; and MT1F: HR = 1.40). Machine learning analysis identified a signature of transcripts associated with lung adenocarcinoma outcome that was largely overlapping with the transcripts identified by Cox analysis, including the three most significant genes (CLCF1, CNTNAP1, and DUSP14). Pathway analysis indicated that the signature is enriched for ECM components. We identified 32 cis-eQTLs for CNTNAP1, including 6 with an inverse correlation and 26 with a direct correlation between the number of minor alleles and transcript levels. Of these, all but one were prognostic: the six with an inverse correlation were associated with better prognosis (HR < 1) while the others were associated with worse prognosis. Our findings provide supportive evidence that genetic predisposition to lung adenocarcinoma outcome is a feature already present in patients' noninvolved lung tissue.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Genetic Predisposition to Disease , Adenocarcinoma of Lung/genetics , Lung/pathology , Genotype , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Prognosis , Polymorphism, Single Nucleotide
5.
Sci Rep ; 12(1): 11424, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794137

ABSTRACT

The risk of colorectal cancer (CRC) depends on environmental and genetic factors. Among environmental factors, an imbalance in the gut microbiota can increase CRC risk. Also, microbiota is influenced by host genetics. However, it is not known if germline variants influence CRC development by modulating microbiota composition. We investigated germline variants associated with the abundance of bacterial populations in the normal (non-involved) colorectal mucosa of 93 CRC patients and evaluated their possible role in disease. Using a multivariable linear regression, we assessed the association between germline variants identified by genome wide genotyping and bacteria abundances determined by 16S rRNA gene sequencing. We identified 37 germline variants associated with the abundance of the genera Bacteroides, Ruminococcus, Akkermansia, Faecalibacterium and Gemmiger and with alpha diversity. These variants are correlated with the expression of 58 genes involved in inflammatory responses, cell adhesion, apoptosis and barrier integrity. Genes and bacteria appear to be involved in the same processes. In fact, expression of the pro-inflammatory genes GAL, GSDMD and LY6H was correlated with the abundance of Bacteroides, which has pro-inflammatory properties; abundance of the anti-inflammatory genus Faecalibacterium correlated with expression of KAZN, with barrier-enhancing functions. Both the microbiota composition and local inflammation are regulated, at least partially, by the same germline variants. These variants may regulate the microenvironment in which bacteria grow and predispose to the development of cancer. Identification of these variants is the first step to identifying higher-risk individuals and proposing tailored preventive treatments that increase beneficial bacterial populations.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Bacteroides/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Faecalibacterium/genetics , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Tumor Microenvironment
6.
Sci Rep ; 12(1): 4604, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301379

ABSTRACT

SARS-CoV-2 has caused a worldwide epidemic of enormous proportions, which resulted in different mortality rates in different countries for unknown reasons. We analyzed factors associated with mortality using data from the Italian national database of more than 4 million SARS-CoV-2-positive cases diagnosed between January 2020 and July 2021, including > 415 thousand hospitalized for coronavirus disease-19 (COVID-19) and > 127 thousand deceased. For patients for whom age, sex and date of infection detection were available, we determined the impact of these variables on mortality 30 days after the date of diagnosis or hospitalization. Multivariable weighted Cox analysis showed that each of the analyzed variables independently affected COVID-19 mortality. Specifically, in the overall series, age was the main risk factor for mortality, with HR > 100 in the age groups older than 65 years compared with a reference group of 15-44 years. Male sex presented a two-fold higher risk of death than female sex. Patients infected after the first pandemic wave (i.e. after 30 June 2020) had an approximately threefold lower risk of death than those infected during the first wave. Thus, in a series of all confirmed SARS-CoV-2-infected cases in an entire European nation, elderly age was by far the most significant risk factor for COVID-19 mortality, confirming that protecting the elderly should be a priority in pandemic management. Male sex and being infected during the first wave were additional risk factors associated with COVID-19 mortality.


Subject(s)
COVID-19 , Aged , COVID-19/epidemiology , Female , Humans , Italy/epidemiology , Male , Pandemics , SARS-CoV-2
7.
Hum Genet ; 141(1): 147-173, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34889978

ABSTRACT

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Exome Sequencing , Genetic Predisposition to Disease , Phenotype , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Germany , Humans , Italy , Male , Middle Aged , Polymorphism, Single Nucleotide , Quebec , SARS-CoV-2 , Sweden , United Kingdom
8.
Eur J Hum Genet ; 27(1): 125-132, 2019 01.
Article in English | MEDLINE | ID: mdl-30143806

ABSTRACT

Red cell polymorphisms can provide evidence of human migration and adaptation patterns. In Eurasia, the distribution of Diego blood group system polymorphisms remains unaddressed. To shed light on the dispersal of the Dia antigen, we performed analyses of correlations between the frequencies of DI*01 allele, C2-M217 and C2-M401 Y-chromosome haplotypes ascribed as being of Mongolian-origin and language affiliations, in 75 Eurasian populations including DI*01 frequency data from the HGDP-CEPH panel. We revealed that DI*01 reaches its highest frequency in Mongolia, Turkmenistan and Kyrgyzstan, expanding southward and westward across Asia with Altaic-speaking nomadic carriers of C2-M217, and even more precisely C2-M401, from their homeland presumably in Mongolia, between the third century BCE and the thirteenth century CE. The present study has highlighted the gene-culture co-migration with the demographic movements that occurred during the past two millennia in Central and East Asia. Additionally, this work contributes to a better understanding of the distribution of immunogenic erythrocyte polymorphisms with a view to improve transfusion safety.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/genetics , Asian People/genetics , Human Migration , Polymorphism, Genetic , Asia , Chromosomes, Human, Y/genetics , Female , Haplotypes , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...