Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1382, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360885

ABSTRACT

Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.


Subject(s)
Calcium-Binding Proteins , Molecular Chaperones , Peptide Elongation Factor 1 , Protein Folding , Ribosomes , Protein Biosynthesis , Proteostasis , Ribosomes/genetics , Ribosomes/metabolism , Humans , Calcium-Binding Proteins/metabolism , Molecular Chaperones/metabolism , Peptide Elongation Factor 1/metabolism
2.
PLoS Pathog ; 17(3): e1009432, 2021 03.
Article in English | MEDLINE | ID: mdl-33760879

ABSTRACT

Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein ß-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal ß-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of ß-actin filaments, leading to more ß-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of ß-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against ß-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae.


Subject(s)
Actins/metabolism , Fimbriae Proteins/metabolism , Meningitis, Pneumococcal/pathology , Neurons/pathology , Streptolysins/metabolism , Virulence Factors/metabolism , Animals , Bacterial Proteins/metabolism , Cell Death/physiology , Humans , Meningitis, Pneumococcal/metabolism , Mice , Neurons/metabolism
3.
Nat Commun ; 9(1): 5342, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559338

ABSTRACT

BAG3 is a multi-domain hub that connects two classes of chaperones, small heat shock proteins (sHSPs) via two isoleucine-proline-valine (IPV) motifs and Hsp70 via a BAG domain. Mutations in either the IPV or BAG domain of BAG3 cause a dominant form of myopathy, characterized by protein aggregation in both skeletal and cardiac muscle tissues. Surprisingly, for both disease mutants, impaired chaperone binding is not sufficient to explain disease phenotypes. Recombinant mutants are correctly folded, show unaffected Hsp70 binding but are impaired in stimulating Hsp70-dependent client processing. As a consequence, the mutant BAG3 proteins become the node for a dominant gain of function causing aggregation of itself, Hsp70, Hsp70 clients and tiered interactors within the BAG3 interactome. Importantly, genetic and pharmaceutical interference with Hsp70 binding completely reverses stress-induced protein aggregation for both BAG3 mutations. Thus, the gain of function effects of BAG3 mutants act as Achilles heel of the HSP70 machinery.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Myocardium/pathology , Protein Aggregation, Pathological/genetics , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Muscle Contraction/genetics , Muscle Contraction/physiology , Muscular Diseases/pathology , Protein Aggregation, Pathological/pathology , Protein Binding/genetics
4.
EMBO J ; 36(8): 1066-1083, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28275011

ABSTRACT

The SUMO-targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin-3 counteracts RNF4 activity during the DNA double-strand break (DSB) response. We find that ataxin-3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin-3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co-depletion of RNF4. Ataxin-3 is recruited to DSBs in a SUMOylation-dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO-dependent mechanism for DUB activity toward MDC1. Loss of ataxin-3 results in reduced DNA damage-induced ubiquitylation due to impaired MDC1-dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin-3 is required for efficient MDC1-dependent DSB repair by non-homologous end-joining and homologous recombination. Consequently, loss of ataxin-3 sensitizes cells to ionizing radiation and poly(ADP-ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin-3 consolidate robust MDC1-dependent signaling and repair of DSBs.


Subject(s)
Ataxin-3/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , SUMO-1 Protein/metabolism , Signal Transduction , Trans-Activators/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Ataxin-3/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Cycle Proteins , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gamma Rays , HEK293 Cells , Humans , Nuclear Proteins/genetics , Repressor Proteins/genetics , SUMO-1 Protein/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Autophagy ; 10(9): 1603-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25046115

ABSTRACT

Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the "BAG-instructed proteasomal to autophagosomal switch and sorting" (BIPASS).


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Cytoplasm/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Humans , Proteolysis , Transcription Factors/metabolism , Ubiquitin/metabolism
6.
Mol Cell Biol ; 34(19): 3570-8, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25022755

ABSTRACT

The C289G mutation of the parkin E3-ubiquitin protein ligase (PARK2) is associated with autosomal recessive juvenile onset Parkinson's disease and was found to be associated with protein aggregation. Members of the human small heat shock proteins (HSPBs) have been implicated in protein degradation and prevention of protein aggregation. In this study, we show that of the 10 HSPB members, individual overexpression of HSPB1, HSPB2, HSPB4, and HSPB7 suppresses PARK2 C289G-associated protein aggregation. Intriguingly, the protective actions of these HSPBs are not impaired upon inactivation of the ATP-dependent HSP70 chaperone machines. Depending on the HSPB member the protective actions involve either autophagic or proteasomal degradation pathways.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins, Small/metabolism , Point Mutation , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Animals , Autophagy , Cell Line , Cytosine/metabolism , Gene Expression Regulation , Guanine/metabolism , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , Humans , Mice , Proteasome Endopeptidase Complex/metabolism , Proteolysis
7.
Dis Model Mech ; 7(4): 421-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24719117

ABSTRACT

There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.


Subject(s)
Disease , Heat-Shock Proteins/metabolism , Heat-Shock Response , Animals , Humans , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology
8.
Philos Trans R Soc Lond B Biol Sci ; 368(1617): 20110409, 2013 May 05.
Article in English | MEDLINE | ID: mdl-23530259

ABSTRACT

The family of the mammalian small heat-shock proteins consists of 10 members (sHSPs/HSPBs: HSPB1-HSPB10) that all share a highly conserved C-terminal alpha-crystallin domain, important for the modulation of both their structural and functional properties. HSPB proteins are biochemically classified as molecular chaperones and participate in protein quality control, preventing the aggregation of unfolded or misfolded proteins and/or assisting in their degradation. Thus, several members of the HSPB family have been suggested to be protective in a number of neurodegenerative and neuromuscular diseases that are characterized by protein misfolding. However, the pro-refolding, anti-aggregation or pro-degradative properties of the various members of the HSPB family differ largely, thereby influencing their efficacy and protective functions. Such diversity depends on several factors, including biochemical and physical properties of the unfolded/misfolded client, the expression levels and the subcellular localization of both the chaperone and the client proteins. Furthermore, although some HSPB members are inefficient at inhibiting protein aggregation, they can still exert neuroprotective effects by other, as yet unidentified, manners; e.g. by maintaining the proper cellular redox state or/and by preventing the activation of the apoptotic cascade. Here, we will focus our attention on how the differences in the activities of the HSPB proteins can influence neurodegenerative and neuromuscular disorders characterized by accumulation of aggregate-prone proteins. Understanding their mechanism of action may allow us to target a specific member in a specific cell type/disease for therapeutic purposes.


Subject(s)
Central Nervous System Diseases/metabolism , Heat-Shock Proteins, Small/metabolism , Mammals , Animals , Gene Expression Regulation/physiology , Proteostasis Deficiencies/metabolism
9.
Int J Biochem Cell Biol ; 44(10): 1657-69, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22484489

ABSTRACT

A number of neurological and muscular disorders are characterized by the accumulation of aggregate-prone proteins and are referred to as protein deposit or protein conformation diseases. Besides some sporadic forms, most of them are genetically inherited in an autosomal dominant manner, although recessive forms also exist. Although genetically very heterogeneous, some of these diseases are the result of mutations in some members of the mammalian small heat shock protein family (sHSP/HSPB), which are key players of the protein quality control system and participate, together with other molecular chaperones and co-chaperones, in the maintenance of protein homeostasis. Thus, on one hand upregulation of specific members of the HSPB family can exert protective effects in protein deposit diseases, such as the polyglutamine diseases. On the other hand, mutations in the HSPBs lead to neurological and muscular disorders, which may be due to a loss-of-function in protein quality control and/or to a gain-of-toxic function, resulting from the aggregation-proneness of the mutants. In this review we summarize the current knowledge about some of the best characterized functions of the HSPBs (e.g. role in cytoskeleton stabilization, chaperone function, anti-aggregation and anti-apoptotic activities), also highlighting differences in the properties of the various HSPBs and how these may counteract protein aggregation diseases. We also describe the mutations in the various HSPBs associated with neurological and muscular disorders and we discuss how gain-of-toxic function mechanisms (e.g. due to the mutated HSPB protein instability and aggregation) and/or loss-of-function mechanisms can contribute to HSPB-associated pathologies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.


Subject(s)
Heat-Shock Proteins, Small/metabolism , Neurodegenerative Diseases/metabolism , Proteostasis Deficiencies/metabolism , Animals , Apoptosis , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/physiology , Humans , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Folding , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology
10.
Prog Neurobiol ; 97(2): 83-100, 2012 May.
Article in English | MEDLINE | ID: mdl-21971574

ABSTRACT

Motor neuron diseases (MNDs) are neurodegenerative disorders that specifically affect the survival and function of upper and/or lower motor neurons. Since motor neurons are responsible for the control of voluntary muscular movement, MNDs are characterized by muscle spasticity, weakness and atrophy. Different susceptibility genes associated with an increased risk to develop MNDs have been reported and several mutated genes have been linked to hereditary forms of MNDs. However, most cases of MNDs occur in sporadic forms and very little is known on their causes. Interestingly, several molecular mechanisms seem to participate in the progression of both the inherited and sporadic forms of MNDs. These include cytoskeleton organization, mitochondrial functions, DNA repair and RNA synthesis/processing, vesicle trafficking, endolysosomal trafficking and fusion, as well as protein folding and protein degradation. In particular, accumulation of aggregate-prone proteins is a hallmark of MNDs, suggesting that the protein quality control system (molecular chaperones and the degradative systems: ubiquitin-proteasome-system and autophagy) are saturated or not sufficient to allow the clearance of these altered proteins. In this review we mainly focus on the MNDs associated with disturbances in protein folding and protein degradation and on the potential implication of a specific class of molecular chaperones, the small heat shock proteins (sHSPs/HSPBs), in motor neuron function and survival. How boosting of specific HSPBs may be a potential useful therapeutic approach in MNDs and how mutations in specific HSPBs can directly cause motor neuron degeneration is discussed.


Subject(s)
Heat-Shock Proteins/metabolism , Motor Neuron Disease/metabolism , Protein Folding , Proteolysis , Animals , Humans , Models, Biological , Motor Neuron Disease/classification , Motor Neuron Disease/physiopathology
11.
J Biol Chem ; 285(48): 37811-22, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-20858900

ABSTRACT

Protein aggregation is a hallmark of many neuronal disorders, including the polyglutamine disorder spinocerebellar ataxia 3 and peripheral neuropathies associated with the K141E and K141N mutations in the small heat shock protein HSPB8. In cells, HSPB8 cooperates with BAG3 to stimulate autophagy in an eIF2α-dependent manner and facilitates the clearance of aggregate-prone proteins (Carra, S., Seguin, S. J., Lambert, H., and Landry, J. (2008) J. Biol. Chem. 283, 1437-1444; Carra, S., Brunsting, J. F., Lambert, H., Landry, J., and Kampinga, H. H. (2009) J. Biol. Chem. 284, 5523-5532). Here, we first identified Drosophila melanogaster HSP67Bc (Dm-HSP67Bc) as the closest functional ortholog of human HSPB8 and demonstrated that, like human HSPB8, Dm-HSP67Bc induces autophagy via the eIF2α pathway. In vitro, both Dm-HSP67Bc and human HSPB8 protected against mutated ataxin-3-mediated toxicity and decreased the aggregation of a mutated form of HSPB1 (P182L-HSPB1) associated with peripheral neuropathy. Up-regulation of both Dm-HSP67Bc and human HSPB8 protected and down-regulation of endogenous Dm-HSP67Bc significantly worsened SCA3-mediated eye degeneration in flies. The K141E and K141N mutated forms of human HSPB8 that are associated with peripheral neuropathy were significantly less efficient than wild-type HSPB8 in decreasing the aggregation of both mutated ataxin 3 and P182L-HSPB1. Our current data further support the link between the HSPB8-BAG3 complex, autophagy, and folding diseases and demonstrate that impairment or loss of function of HSPB8 might accelerate the progression and/or severity of folding diseases.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Heat-Shock Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteostasis Deficiencies/metabolism , Animals , Autophagy , Disease Models, Animal , Drosophila/genetics , Drosophila Proteins/genetics , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eye/metabolism , Gene Expression Regulation , HEK293 Cells , Heat-Shock Proteins/genetics , Humans , Molecular Chaperones , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...