Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Endocr Relat Cancer ; 30(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37410387

ABSTRACT

Abstract: Lymphangioleiomyomatosis (LAM) is a cystic lung disease found almost exclusively in genetic females and caused by small clusters of smooth muscle cell tumors containing mutations in one of the two tuberous sclerosis genes (TSC1 or TSC2). Significant advances over the past 2-3 decades have allowed researchers and clinicians to more clearly understand the pathophysiology of LAM, and therefore better diagnose and treat patients with this disease. Despite substantial progress, only one proven treatment for LAM is used in practice: mechanistic target of rapamycin complex 1 (mTORC1) inhibition with medications such as sirolimus. While mTORC1 inhibition effectively slows LAM progression in many patients, it is not curative, is not effective in all patients, and can be associated with significant side effects. Furthermore, the presence of established and accurate biomarkers to follow LAM progression is limited. That said, discovering additional diagnostic and treatment options for LAM is paramount. This review will describe recent advances in LAM research, centering on the origin and nature of the LAM cell, the role of estrogen in LAM progression, the significance of melanocytic marker expression in LAM cells, and the potential roles of the microenvironment in promoting LAM tumor growth. By appreciating these processes in more detail, researchers and caregivers may be afforded novel approaches to aid in the treatment of patients with LAM.


Subject(s)
Lymphangioleiomyomatosis , Female , Humans , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/metabolism , Tuberous Sclerosis Complex 2 Protein , Sirolimus/pharmacology , Sirolimus/therapeutic use , Mechanistic Target of Rapamycin Complex 1 , Biology , Tumor Microenvironment
2.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37042477

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by smooth muscle cell-like tumors containing tuberous sclerosis (TSC) gene mutations and found almost exclusively in females. Patient studies suggest LAM progression is estrogen dependent, an observation supported by in vivo mouse models. However, in vitro data using TSC-null cell lines demonstrate modest estradiol (E2) responses, suggesting E2 effects in vivo may involve pathways independent of direct tumor stimulation. We previously reported tumor-dependent neutrophil expansion and promotion of TSC2-null tumor growth in an E2-sensitive LAM mouse model. We therefore hypothesized that E2 stimulates tumor growth in part by promoting neutrophil production. Here we report that E2-enhanced lung colonization of TSC2-null cells is indeed dependent on neutrophils. We demonstrate that E2 induces granulopoiesis via estrogen receptor α in male and female bone marrow cultures. With our novel TSC2-null mouse myometrial cell line, we show that factors released from these cells drive E2-sensitive neutrophil production. Last, we analyzed single-cell RNA sequencing data from LAM patients and demonstrate the presence of tumor-activated neutrophils. Our data suggest a powerful positive feedback loop whereby E2 and tumor factors induce neutrophil expansion, which in turn intensifies tumor growth and production of neutrophil-stimulating factors, resulting in continued TSC2-null tumor growth.


Subject(s)
Lymphangioleiomyomatosis , Mice , Male , Female , Animals , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/metabolism , Lymphangioleiomyomatosis/pathology , Tumor Suppressor Proteins/genetics , Estradiol/pharmacology , Neutrophils , Tuberous Sclerosis Complex 2 Protein/genetics
3.
Endocrinology ; 160(5): 1166-1174, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30912811

ABSTRACT

Androgens, although traditionally thought to be male sex steroids, play important roles in female reproduction, both in healthy and pathological states. This mini-review focuses on recent advances in our knowledge of the role of androgens in the ovary. Androgen receptor (AR) is expressed in oocytes, granulosa cells, and theca cells, and is temporally regulated during follicular development. Mouse knockout studies have shown that AR expression in granulosa cells is critical for normal follicular development and subsequent ovulation. In addition, androgens are involved in regulating dynamic changes in ovarian steroidogenesis that are critical for normal cycling. Androgen effects on follicle development have been incorporated into clinical practice in women with diminished ovarian reserve, albeit with limited success in available literature. At the other extreme, androgen excess leads to disordered follicle development and anovulatory infertility known as polycystic ovary syndrome (PCOS), with studies suggesting that theca cell AR may mediate many of these negative effects. Finally, both prenatal and postnatal animal models of androgen excess have been developed and are being used to study the pathophysiology of PCOS both within the ovary and with regard to overall metabolic health. Taken together, current scientific consensus is that a careful balance of androgen activity in the ovary is necessary for reproductive health in women.


Subject(s)
Androgens/metabolism , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , Receptors, Androgen/metabolism , Theca Cells/metabolism , Animals , Female , Gene Expression , Humans , Mice, Knockout , Receptors, Androgen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL