Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
medRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746250

ABSTRACT

Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD); however, there is limited understanding of which subthalamic pathways are recruited in response to stimulation. Here, by focusing on the polarity of the stimulus waveform (cathodic vs. anodic), our goal was to elucidate biophysical mechanisms that underlie electrical stimulation in the human brain. In clinical studies, cathodic stimulation more easily triggers behavioral responses, but anodic DBS broadens the therapeutic window. This suggests that neural pathways involved respond preferentially depending on stimulus polarity. To experimentally compare the activation of therapeutically relevant pathways during cathodic and anodic subthalamic nucleus (STN) DBS, pathway activation was quantified by measuring evoked potentials resulting from antidromic or orthodromic activation in 15 PD patients undergoing DBS implantation. Cortical evoked potentials (cEP) were recorded using subdural electrocorticography, DBS local evoked potentials (DLEP) were recorded from non-stimulating contacts and EMG activity was recorded from arm and face muscles. We measured: 1) the amplitude of short-latency cEP, previously demonstrated to reflect activation of the cortico-STN hyperdirect pathway, 2) DLEP amplitude thought to reflect activation of STN-globus pallidus (GP) pathway, and 3) amplitudes of very short-latency cEP and motor evoked potentials (mEP) for activation of cortico-spinal/bulbar tract (CSBT). We constructed recruitment and strength-duration curves for each EP/pathway to compare the excitability for different stimulation polarities. We compared experimental data with the most advanced DBS computational models. Our results provide experimental evidence that subcortical cathodic and anodic stimulation activate the same pathways in the STN region and that cathodic stimulation is in general more efficient. However, relative efficiency varies for different pathways so that anodic stimulation is the least efficient in activating CSBT, more efficient in activating the HDP and as efficient as cathodic in activating STN-GP pathway. Our experiments confirm biophysical model predictions regarding neural activations in the central nervous system and provide evidence that stimulus polarity has differential effects on passing axons, terminal synapses, and local neurons. Comparison of experimental results with clinical DBS studies provides further evidence that the hyperdirect pathway may be involved in the therapeutic mechanisms of DBS.

2.
Gait Posture ; 108: 151-156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070393

ABSTRACT

BACKGROUND: The effect of Deep Brain Stimulation (DBS) on gait in Parkinson's Disease (PD) is poorly understood. Kinematic studies utilizing quantitative gait outcomes such as speed, cadence, and stride length have shown mixed results and were done mostly before and after acute DBS discontinuation. OBJECTIVE: To examine longitudinal changes in kinematic gait outcomes before and after DBS surgery. METHOD: We retrospectively assessed changes in quantitative gait outcomes via motion capture in 22 PD patients before and after subthalamic (STN) or globus pallidus internus (GPi) DBS, in on medication state. Associations between gait outcomes and clinical variables were also assessed. RESULT: Gait speed reduced from 110.7 ± 21.3 cm/s before surgery to 93.6 ± 24.9 after surgery (7.7 ± 2.9 months post-surgery, duration between assessments was 15.0 ± 3.8 months). Cadence, step length, stride length, and single support time reduced, while total support time, and initial double support time increased. Despite this, there was overall improvement in the Movement Disorder Society-Unified Parkinson Disease Rating Scale-Part III score "on medication/on stimulation" score (from 19.8 ± 10.7-13.9 ± 8.6). Change of gait speed was not related to changes in levodopa dosage, disease duration, unilateral vs bilateral stimulation, or target nucleus. CONCLUSION: Quantitative gait outcomes in on medication state worsened after chronic DBS therapy despite improvement in other clinical outcomes. Whether these changes reflect the effects of DBS as opposed to ongoing disease progression is unknown.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Biomechanical Phenomena , Retrospective Studies , Treatment Outcome , Globus Pallidus , Gait
3.
Front Hum Neurosci ; 17: 1269401, 2023.
Article in English | MEDLINE | ID: mdl-37964803

ABSTRACT

Background: Deep brain stimulation (DBS) is the primary surgical intervention for Parkinson's disease (PD) patients with insufficient response to medication, significantly improving motor symptoms and quality of life. Despite FDA approval for over two decades, access to this therapy remains limited. This systematic review aims to evaluate the influence of gender, race/ethnicity, socioeconomic status, and age on health disparities associated with DBS for PD, providing an overview of current research in this field. Methods: A systematic literature search was conducted in PubMed/MEDLINE, Embase, Web of Science and Cochrane databases from 1960 to September 12th, 2023, following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Studies that examine the disparities in accessing DBS among patients with PD were included, comparing different demographic factors. Findings were synthesized and presented narratively to identify and understand DBS disparities. Results: After screening for relevance, 25 studies published between 1960 and 2023 were included, with 16 studies meeting full-text review criteria. While reviewing the references of the 16 articles, two additional studies were included, bringing the total number of included studies to 18. Most studies originated from the United States (44%). The identified studies were categorized as identifying disparities, understanding disparities, or reducing disparities. The majority focused on identifying disparities (72%), while fewer studies delved into understanding the underlying factors (28%). No studies evaluated strategies for reducing disparities. The findings indicate that elderly, female, and Black people, as well as those from low socioeconomic backgrounds and developing countries face greater obstacles in accessing DBS for PD. Conclusion: This study highlights factors contributing to disparities in DBS utilization for PD, including race, gender, and socioeconomic status. Public health policymakers, practitioners, and clinicians should recognize these inequalities and work toward reducing disparities, particularly among vulnerable populations.

4.
Front Hum Neurosci ; 17: 1269864, 2023.
Article in English | MEDLINE | ID: mdl-37810765

ABSTRACT

Introduction: Sleep dysfunction is frequently experienced by people with Parkinson's disease (PD) and negatively influences quality of life. Although subthalamic nucleus (STN) deep brain stimulation (DBS) can improve sleep in PD, sleep microstructural features such as sleep spindles provide additional insights about healthy sleep. For example, sleep spindles are important for better cognitive performance and for sleep consolidation in healthy adults. We hypothesized that conventional STN DBS settings would yield a greater enhancement in spindle density compared to OFF and low frequency DBS. Methods: In a previous within-subject, cross-sectional study, we evaluated effects of low (60 Hz) and conventional high (≥130 Hz) frequency STN DBS settings on sleep macroarchitectural features in individuals with PD. In this post hoc, exploratory analysis, we conducted polysomnography (PSG)-derived quantitative electroencephalography (qEEG) assessments in a cohort of 15 individuals with PD who had undergone STN DBS treatment a median 13.5 months prior to study participation. Fourteen participants had unilateral DBS and 1 had bilateral DBS. During three nonconsecutive nights of PSG, the participants were assessed under three different DBS conditions: DBS OFF, DBS LOW frequency (60 Hz), and DBS HIGH frequency (≥130 Hz). The primary objective of this study was to investigate the changes in sleep spindle density across the three DBS conditions using repeated-measures analysis of variance. Additionally, we examined various secondary outcomes related to sleep qEEG features. For all participants, PSG-derived EEG data underwent meticulous manual inspection, with the exclusion of any segments affected by movement artifact. Following artifact rejection, sleep qEEG analysis was conducted on frontal and central leads. The measures included slow wave (SW) and spindle density and morphological characteristics, SW-spindle phase-amplitude coupling, and spectral power analysis during non-rapid eye movement (NREM) sleep. Results: The analysis revealed that spindle density was significantly higher in the DBS HIGH condition compared to the DBS LOW condition. Surprisingly, we found that SW amplitude during NREM was significantly higher in the DBS LOW condition compared to DBS OFF and DBS HIGH conditions. However, no significant differences were observed in the other sleep qEEG features during sleep at different DBS conditions. Conclusion: This study presents preliminary evidence suggesting that conventional HIGH frequency DBS settings enhance sleep spindle density in PD. Conversely, LOW frequency settings may have beneficial effects on increasing slow wave amplitude during sleep. These findings may inform mechanisms underlying subjective improvements in sleep quality reported in association with DBS. Moreover, this work supports the need for additional research on the influence of surgical interventions on sleep disorders, which are prevalent and debilitating non-motor symptoms in PD.

5.
Front Neurol ; 14: 1223974, 2023.
Article in English | MEDLINE | ID: mdl-37745647

ABSTRACT

Introduction: Parkinson's disease (PD) patients with REM sleep behavior disorder (RBD) are at greater risk for cognitive decline and RBD has been associated with alterations in sleep-related EEG oscillations. This study evaluates differences in sleep quantitative EEG (qEEG) and cognition in PD participants with (PD-RBD) and without RBD (PD-no-RBD). Methods: In this cross-sectional study, polysomnography (PSG)-derived qEEG and a comprehensive level II neuropsychological assessment were compared between PD-RBD (n = 21) and PD-no-RBD (n = 31). Following artifact rejection, qEEG analysis was performed in the frontal and central leads. Measures included Scalp-slow wave (SW) density, spindle density, morphological properties of SW and sleep spindles, SW-spindle phase-amplitude coupling, and spectral power analysis in NREM and REM. The neurocognitive battery had at least two tests per domain, covering five cognitive domains as recommended by the Movement Disorders Society Task Force for PD-MCI diagnosis. Differences in qEEG features and cognitive performance were compared between the two groups. Stepwise linear regression was performed to evaluate predictors of cognitive performance. Multiple comparisons were corrected using the Benjamini-Hochberg method. Results: Spindle density and SW-spindle co-occurrence percent were lower in participants with PD-RBD compared to PD-no-RBD. The PD-RBD group also demonstrated higher theta spectral power during REM. Sleep spindles and years of education, but not RBD, were predictors of cognitive performance. Conclusion: PD participants with RBD have alterations in sleep-related qEEG compared to PD participants without RBD. Although PD-RBD participants had worse cognitive performance compared to PD-no-RBD, regression models suggest that lower sleep spindle density, rather than presence of RBD, predicts worse comprehensive cognitive score. Future studies should include longitudinal evaluation to determine whether sleep-related qEEG alterations are associated with more rapid cognitive decline in PD-RBD.

8.
J Parkinsons Dis ; 13(3): 351-365, 2023.
Article in English | MEDLINE | ID: mdl-37066921

ABSTRACT

BACKGROUND: Sleep disorders are common in Parkinson's disease (PD) and include alterations in sleep-related EEG oscillations. OBJECTIVE: This case-control study tested the hypothesis that patients with PD would have a lower density of Scalp-Slow Wave (SW) oscillations and higher slow-to-fast frequencies ratio in rapid eye movement (REM) sleep than non-PD controls. Other sleep-related quantitative EEG (qEEG) features were also examined, including SW morphology, sleep spindles, and Scalp-SW spindle phase-amplitude coupling. METHODS: Polysomnography (PSG)-derived sleep EEG was compared between PD participants (n = 56) and non-PD controls (n = 30). Following artifact rejection, sleep qEEG analysis was performed in frontal and central leads. Measures included SW density and morphological features of SW and sleep spindles, SW-spindle phase-amplitude coupling, and spectral power analysis in Non-REM (NREM) and REM. Differences in qEEG features between PD and non-PD controls were compared using two-tailed Welch's t-tests, and correction for multiple comparisons was performed per the Benjamini-Hochberg method. RESULTS: SW density was lower in PD than in non-PD controls (F = 13.5, p' = 0.003). The PD group also exhibited higher ratio of slow REM EEG frequencies (F = 4.23, p' = 0.013), higher slow spindle peak frequency (F = 24.7, p' < 0.002), and greater SW-spindle coupling angle distribution non-uniformity (strength) (F = 7.30, p' = 0.034). CONCLUSION: This study comprehensively evaluates sleep qEEG including SW-spindle phase amplitude coupling in PD compared to non-PD controls. These findings provide novel insights into how neurodegenerative disease disrupts electrophysiological sleep rhythms. Considering the role of sleep oscillatory activity on neural plasticity, future studies should investigate the influence of these qEEG markers on cognition in PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Case-Control Studies , Sleep/physiology , Electroencephalography
9.
Mov Disord Clin Pract ; 10(3): 382-391, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36949802

ABSTRACT

Background: Deep brain stimulation (DBS) for Parkinson's disease (PD) is generally contraindicated in persons with dementia but it is frequently performed in people with mild cognitive impairment or normal cognition, and current clinical guidelines are primarily based on these cohorts. Objectives: To determine if moderately cognitive impaired individuals including those with mild dementia could meaningfully benefit from DBS in terms of motor and non-motor outcomes. Methods: In this retrospective case-control study, we identified a cohort of 40 patients with PD who exhibited moderate (two or more standard deviations below normative scores) cognitive impairment (CI) during presurgical workup and compared their 1-year clinical outcomes to a cohort of 40 matched patients with normal cognition (NC). The surgery targeted subthalamus, pallidus or motor thalamus, in a unilateral, bilateral or staged approach. Results: At preoperative baseline, the CI cohort had higher Unified Parkinson's Disease Rating Scale (UPDRS) subscores, but similar levodopa responsiveness compared to the NC cohort. The NC and CI cohorts demonstrated comparable degrees of postoperative improvement in the OFF-medication motor scores, motor fluctuations, and medication reduction. There was no difference in adverse event rates between the two cohorts. Outcomes in the CI cohort did not depend on the target, surgical staging, or impaired cognitive domain. Conclusions: Moderately cognitively impaired patients with PD can experience meaningful motor benefit and medication reduction with DBS.

10.
Neurosurgery ; 92(6): 1163-1170, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36700743

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a highly efficacious treatment for appropriately selected patients with advanced, medically refractory Parkinson's disease (PD). It is severely underutilized in Black patients-constituting a major treatment gap. The source of this disparity is unknown, but its identification and correction are necessary to provide equitable care. OBJECTIVE: To identify sources of racial disparity in DBS for PD. METHODS: We predicted the demographics of potential DBS candidates by synthesizing published data on PD and race. We retrospectively examined the clinical course of a cohort including all patients with PD evaluated for DBS at our center from 2016 to 2020, testing whether the rate of DBS use and time from evaluation to surgery differed by race. We also tested whether the geographic distribution of patient catchment was biased relative to racial demographics. RESULTS: Far fewer Black patients were evaluated for DBS than would be expected, given regional demographics. There was no significant difference in the rate at which Black patients evaluated in our clinic were treated with DBS, compared with White patients. Fewer patients were recruited from portions of the surrounding area with larger Black populations. CONCLUSION: The known underuse of DBS in Black patients with PD was replicated in this sample from a center in a racially diverse metropolitan area, but was not attributable to the presurgical workup. Future work should examine the transition from medical management to surgical evaluation where drivers of disparity are potentially situated. Surgical practices should increase outreach to physicians managing PD in underserved areas.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Humans , Parkinson Disease/surgery , Retrospective Studies , Treatment Outcome
11.
Front Rehabil Sci ; 3: 952289, 2022.
Article in English | MEDLINE | ID: mdl-36188974

ABSTRACT

Background: In a randomized, controlled trial, we showed that high-intensity rehabilitation, combining resistance training and body-weight interval training, improves sleep efficiency in Parkinson's disease (PD). Quantitative sleep EEG (sleep qEEG) features, including sleep spindles, are altered in aging and in neurodegenerative disease. Objective: The objective of this post-hoc analysis was to determine the effects of exercise, in comparison to a sleep hygiene, no-exercise control group, on the quantitative characteristics of sleep spindle morphology in PD. Methods: We conducted an exploratory post-hoc analysis of 24 PD participants who were randomized to exercise (supervised 3 times/week for 16 weeks) versus 26 PD participants who were assigned to a sleep hygiene, no-exercise control group. At baseline and post-intervention, all participants completed memory testing and underwent polysomnography (PSG). PSG-derived sleep EEG central leads (C3 and C4) were manually inspected, with rejection of movement and electrical artifacts. Sleep spindle events were detected based on the following parameters: (1) frequency filter = 11-16 Hz, (2) event duration = 0.5-3 s, and (3) amplitude threshold 75% percentile. We then calculated spindle morphological features, including density and amplitude. These characteristics were computed and averaged over non-rapid eye movement (NREM) sleep stages N2 and N3 for the full night and separately for the first and second halves of the recording. Intervention effects on these features were analyzed using general linear models with group x time interaction. Significant interaction effects were evaluated for correlations with changes in performance in the memory domain. Results: A significant group x time interaction effect was observed for changes in sleep spindle density due to exercise compared to sleep hygiene control during N2 and N3 during the first half of the night, with a moderate effect size. This change in spindle density was positively correlated with changes in performance on memory testing in the exercise group. Conclusions: This study is the first to demonstrate that high-intensity exercise rehabilitation has a potential role in improving sleep spindle density in PD and leading to better cognitive performance in the memory domain. These findings represent a promising advance in the search for non-pharmacological treatments for this common and debilitating non-motor symptom.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1729-1733, 2022 07.
Article in English | MEDLINE | ID: mdl-36085828

ABSTRACT

Deep brain stimulation (DBS) is becoming a fundamental tool for the treatment and study of neurological and psychiatric diseases and disorders. Recently developed DBS devices and electrodes have allowed for more flexible and precise stimulation. Densely packed stimulation contacts can be independently stimulated to shape the electric field, targeting pathways of interest, and avoiding those that may cause side-effects. However, this flexibility comes at a cost. Each additional stimulation setting causes an exponential increase in the number of potential stimulation settings. Recent works have addressed this problem using Bayesian optimization. However, this approach has a limited ability to learn from multiple subjects to improve performance. In this study we extend a recently developed meta-Bayesian optimization algorithm to the DBS domain. We evaluated this approach compared to classical Bayesian optimization and a random search using data collected from a nonhuman primate during stimulation of the subthalamic nucleus while recording evoked potentials in the motor cortex and locally within the subthalamic nucleus. On the task of finding the stimulation setting that maximized the evoked potential across a distribution of generated objective functions, meta-Bayesian optimization significantly outperformed the other approaches with a cumulative reward of 8.93±0.70, compared to 7.17±1.64 for Bayesian optimization (p < 10-9) and 6.89±1.56 for the random search (p < 10-9). Moreover, the algorithm outperformed Bayesian optimization when tested on an objective function not used during training. These results demonstrate that meta-Bayesian optimization can take advantage of the structure underlying a distribution of objective function and learn an optimal search strategy that can generalize beyond the objective functions that were not part of the training data. Clinical Relevance - This extends a meta-Bayesian optimization approach for optimizing DBS stimulation settings that outperforms state-of-art algorithms by 24.6%.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Algorithms , Animals , Bayes Theorem , Deep Brain Stimulation/methods , Evoked Potentials/physiology , Humans , Subthalamic Nucleus/physiology
13.
J Neural Eng ; 19(4)2022 08 18.
Article in English | MEDLINE | ID: mdl-35921806

ABSTRACT

Objective.Deep brain stimulation (DBS) programming for movement disorders requires systematic fine tuning of stimulation parameters to ameliorate tremor and other symptoms while avoiding side effects. DBS programming can be a time-consuming process and requires clinical expertise to assess response to DBS to optimize therapy for each patient. In this study, we describe and evaluate an automated, closed-loop, and patient-specific framework for DBS programming that measures tremor using a smartwatch and automatically changes DBS parameters based on the recommendations from a closed-loop optimization algorithm thus eliminating the need for an expert clinician.Approach.Bayesian optimization which is a sample-efficient global optimization method was used as the core of this DBS programming framework to adaptively learn each patient's response to DBS and suggest the next best settings to be evaluated. Input from a clinician was used initially to define a maximum safe amplitude, but we also implemented 'safe Bayesian optimization' to automatically discover tolerable exploration boundaries.Main results.We tested the system in 15 patients (nine with Parkinson's disease and six with essential tremor). Tremor suppression at best automated settings was statistically comparable to previously established clinical settings. The optimization algorithm converged after testing15.1±0.7settings when maximum safe exploration boundaries were predefined, and17.7±4.9when the algorithm itself determined safe exploration boundaries.Significance.We demonstrate that fully automated DBS programming framework for treatment of tremor is efficient and safe while providing outcomes comparable to that achieved by expert clinicians.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Parkinson Disease , Bayes Theorem , Deep Brain Stimulation/methods , Essential Tremor/therapy , Humans , Parkinson Disease/therapy , Tremor/diagnosis , Tremor/therapy
14.
Exp Brain Res ; 240(4): 991-1004, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35099592

ABSTRACT

Despite the clinical and financial burden of Parkinson's disease (PD), there is no standardized, reliable biomarker to diagnose and track PD progression. Instead, PD is primarily assessed using subjective clinical rating scales and patient self-report. Such approaches can be imprecise, hindering diagnosis and disease monitoring. An objective biomarker would be beneficial for clinical care, refining diagnosis, and treatment. Due to widespread electrophysiological abnormalities both within and between brain structures in PD, development of electrophysiologic biomarkers may be feasible. Basal ganglia recordings acquired with neurosurgical approaches have revealed elevated power in the beta frequency range (13-30 Hz) in PD, suggesting that beta power could be a putative PD biomarker. However, there are limitations to the use of beta power as a biomarker. Recent advances in analytic approaches have led to novel methods to quantify oscillatory synchrony in the beta frequency range. Here we describe some of these novel approaches in the context of PD and explore how they may serve as electrophysiological biomarkers. These novel signatures include (1) interactions between beta phase and broadband (> 50 Hz, "gamma") amplitude (i.e., phase amplitude coupling, PAC), (2) asymmetries in waveform shape, (3) beta coherence, and (4) beta "bursts." Development of a robust, reliable, and readily accessible electrophysiologic biomarker would represent a major step towards more precise and personalized care in PD.


Subject(s)
Parkinson Disease , Basal Ganglia , Beta Rhythm/physiology , Biomarkers , Electrophysiological Phenomena , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy
15.
Front Hum Neurosci ; 16: 1084782, 2022.
Article in English | MEDLINE | ID: mdl-36819295

ABSTRACT

The deep brain stimulation (DBS) Think Tank X was held on August 17-19, 2022 in Orlando FL. The session organizers and moderators were all women with the theme women in neuromodulation. Dr. Helen Mayberg from Mt. Sinai, NY was the keynote speaker. She discussed milestones and her experiences in developing depression DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging DBS technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank X speakers was that DBS has continued to expand in scope however several indications have reached the "trough of disillusionment." DBS for depression was considered as "re-emerging" and approaching a slope of enlightenment. DBS for depression will soon re-enter clinical trials. The group estimated that globally more than 244,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia, and Australia; cutting-edge technologies, closed loop DBS, DBS tele-health, neuroethics, lesion therapy, interventional psychiatry, and adaptive DBS.

16.
Alzheimers Dement (N Y) ; 7(1): e12178, 2021.
Article in English | MEDLINE | ID: mdl-34027028

ABSTRACT

INTRODUCTION: We and collaborators discovered that flickering lights and sound at gamma frequency (40 Hz) reduce Alzheimer's disease (AD) pathology and alter immune cells and signaling in mice. To determine the feasibility of this intervention in humans we tested the safety, tolerability, and daily adherence to extended audiovisual gamma flicker stimulation. METHODS: Ten patients with mild cognitive impairment due to underlying AD received 1-hour daily gamma flicker using audiovisual stimulation for 4 or 8 weeks at home with a delayed start design. RESULTS: Gamma flicker was safe, tolerable, and adherable. Participants' neural activity entrained to stimulation. Magnetic resonance imaging and cerebral spinal fluid proteomics show preliminary evidence that prolonged flicker affects neural networks and immune factors in the nervous system. DISCUSSION: These findings show that prolonged gamma sensory flicker is safe, tolerable, and feasible with preliminary indications of immune and network effects, supporting further study of gamma stimulation in AD.

17.
J Neural Eng ; 18(4)2021 05 05.
Article in English | MEDLINE | ID: mdl-33862604

ABSTRACT

Objective.Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) but its success depends on a time-consuming process of trial-and-error to identify the optimal stimulation settings for each individual patient. Data-driven optimization algorithms have been proposed to efficiently find the stimulation setting that maximizes a quantitative biomarker of symptom relief. However, these algorithms cannot efficiently take into account stimulation settings that may control symptoms but also cause side effects. Here we demonstrate how multi-objective data-driven optimization can be used to find the optimal trade-off between maximizing symptom relief and minimizing side effects.Approach.Cortical and motor evoked potential data collected from PD patients during intraoperative stimulation of the subthalamic nucleus were used to construct a framework for designing and prototyping data-driven multi-objective optimization algorithms. Using this framework, we explored how these techniques can be applied clinically, and characterized the design features critical for solving this optimization problem. Our two optimization objectives were to maximize cortical evoked potentials, a putative biomarker of therapeutic benefit, and to minimize motor potentials, a biomarker of motor side effects.Main Results.Using thisin silicodesign framework, we demonstrated how the optimal trade-off between two objectives can substantially reduce the stimulation parameter space by 61 ± 19%. The best algorithm for identifying the optimal trade-off between the two objectives was a Bayesian optimization approach with an area under the receiver operating characteristic curve of up to 0.94 ± 0.02, which was possible with the use of a surrogate model and a well-tuned acquisition function to efficiently select which stimulation settings to sample.Significance.These findings show that multi-objective optimization is a promising approach for identifying the optimal trade-off between symptom relief and side effects in DBS. Moreover, these approaches can be readily extended to newly discovered biomarkers, adapted to DBS for disorders beyond PD, and can scale with the development of more complex DBS devices.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Bayes Theorem , Evoked Potentials, Motor , Humans , Parkinson Disease/therapy
18.
Brain Stimul ; 14(3): 549-563, 2021.
Article in English | MEDLINE | ID: mdl-33757931

ABSTRACT

BACKGROUND: Subthalamic deep brain stimulation (DBS) is an effective surgical treatment for Parkinson's disease and continues to advance technologically with an enormous parameter space. As such, in-silico DBS modeling systems have become common tools for research and development, but their underlying methods have yet to be standardized and validated. OBJECTIVE: Evaluate the accuracy of patient-specific estimates of neural pathway activations in the subthalamic region against intracranial, cortical evoked potential (EP) recordings. METHODS: Pathway activations were modeled in eleven patients using the latest advances in connectomic modeling of subthalamic DBS, focusing on the hyperdirect pathway (HDP) and corticospinal/bulbar tract (CSBT) for their relevance in human research studies. Correlations between pathway activations and respective EP amplitudes were quantified. RESULTS: Good model performance required accurate lead localization and image fusions, as well as appropriate selection of fiber diameter in the biophysical model. While optimal model parameters varied across patients, good performance could be achieved using a global set of parameters that explained 60% and 73% of electrophysiologic activations of CSBT and HDP, respectively. Moreover, restricted models fit to only EP amplitudes of eight standard (monopolar and bipolar) electrode configurations were able to extrapolate variation in EP amplitudes across other directional electrode configurations and stimulation parameters, with no significant reduction in model performance across the cohort. CONCLUSIONS: Our findings demonstrate that connectomic models of DBS with sufficient anatomical and electrical details can predict recruitment dynamics of white matter. These results will help to define connectomic modeling standards for preoperative surgical targeting and postoperative patient programming applications.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Subthalamus , Evoked Potentials , Humans , Neural Pathways , Parkinson Disease/therapy
19.
Arch Clin Neuropsychol ; 36(4): 632-637, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33140081

ABSTRACT

OBJECTIVE: To compare Patient-Reported Outcomes Measurement Information System (PROMIS) measures of depression and anxiety to the Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI), and explore patterns of selected PROMIS measures in patients undergoing evaluation for Deep Brain Stimulation (DBS). METHOD: BDI-II, BAI, and seven PROMIS measures were administered to 163 DBS candidates with diagnoses of Parkinson Disease (PD, n = 102), Essential Tremor (ET, n = 45), or Dystonia (n = 16). RESULTS: Elevated PROMIS Depression using BDI-II Crosswalk equivalents predicted elevated BDI-II with 63% sensitivity and 94% specificity. On other PROMIS measures, 69 patients (42%) reported low Physical Function (T ≤ 40) with Pain Interference being the next most frequent abnormal score (n = 51, 31%). Group differences were present for PROMIS Physical Function, Sleep Disturbance, and Pain. CONCLUSIONS: These preliminary findings provide initial support for PROMIS Depression to assess mood disturbance in DBS candidates, and characterize other PROMIS measures in DBS candidates including group differences reflecting disease specific contribution to Quality of Life.


Subject(s)
Deep Brain Stimulation , Depression , Anxiety/diagnosis , Anxiety/etiology , Depression/diagnosis , Humans , Information Systems , Neuropsychological Tests , Patient Reported Outcome Measures , Quality of Life
20.
J Parkinsons Dis ; 11(2): 703-714, 2021.
Article in English | MEDLINE | ID: mdl-33361608

ABSTRACT

BACKGROUND: Cognitive and sleep dysfunction are common non-motor symptoms in Parkinson's disease (PD). OBJECTIVE: Determine the relationship between slow wave sleep (SWS) and cognitive performance in PD. METHODS: Thirty-two PD participants were evaluated with polysomnography and a comprehensive level II neurocognitive battery, as defined by the Movement Disorders Society Task Force for diagnosis of PD-mild cognitive impairment. Raw scores for each test were transformed into z-scores using normative data. Z-scores were averaged to obtain domain scores, and domain scores were averaged to determine the Composite Cognitive Score (CCS), the primary outcome. Participants were grouped by percent of SWS into High SWS and Low SWS groups and compared on CCS and other outcomes using 2-sided t-tests or Mann-Whitney U. Correlations of cognitive outcomes with sleep architecture and EEG spectral power were performed. RESULTS: Participants in the High SWS group demonstrated better global cognitive function (CCS) (p = 0.01, effect size: r = 0.45). In exploratory analyses, the High SWS group showed better performance in domains of executive function (effect size: Cohen's d = 1.05), language (d = 0.95), and processing speed (d = 1.12). Percentage of SWS was correlated with global cognition and executive function, language, and processing speed. Frontal EEG delta power during N3 was correlated with the CCS and executive function. Cognition was not correlated with subjective sleep quality. CONCLUSION: Increased SWS and higher delta spectral power are associated with better cognitive performance in PD. This demonstrates the significant relationship between sleep and cognitive function and suggests that interventions to improve sleep might improve cognition in individuals with PD.


Subject(s)
Parkinson Disease , Sleep, Slow-Wave , Cognition , Electroencephalography , Humans , Parkinson Disease/complications , Sleep , Sleep Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...