Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Comp Immunol Microbiol Infect Dis ; 104: 102094, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38035481

ABSTRACT

The non-human primate (NHP) Leontopithecus rosalia is an endangered species native of Brazil and lives in forest fragments with different levels of contact with humans (natural, private and urban). Other NHPs - Callithrix spp. - were introduced by humans and co-exist and interact with the native species in these forests. To evaluate if living in or close to human-modified environments could constitute a risk for L. rosalia, we compared the prevalence, genetic background, antibiotic susceptibility and virulence gene content of staphylococci collected from the native and the introduced species from different forest fragments. We found that presence in human-dominated environments increased the colonization rate of L. rosalia with Mammaliicoccus sciuri (former Staphylococcus sciuri) from 18 % to 85 % (p = 0.0001) and of Callithrix spp with Staphylococcus aureus from 6 % to 100 % (p = 0.0001). According to molecular typing data obtained differences probably resulted from dissemination of these bacterial species from the invader NHP species and from humans. Changes in microbiota were paralleled by an increase in the prevalence of Panton-Valentine Leukocidin gene and in resistance to beta-lactams, macrolides and/or lincosamides as exposure to human environment increased. In particular, erythromycin resistance in S. aureus from Callithrix spp. increased from 0 % to 50 % and resistance rate to at least one antibiotic in coagulase-negative staphylococci species from L. rosalia increased from 13 % to 56 % (p = 0.0003). Our results showed that contact of native animal species with human-created environments increased the content of antimicrobial resistant and pathogenic bacteria on their commensal microbiota, which ultimately can impact on their health. IMPORTANCE: Endangered animal species are vulnerable to environmental alterations and human activities have been repeatedly identified as factors driving drastic changes in the natural landscape. It is extremely important to monitor changes in the environment surrounding protected species, because this could lead to early detection of any potential threats. In this study, we found that the contact of L. rosalia - a protected non-human primate from Brazil - with human environments is related to changes in their commensal microbiota. These included an increase in the number of pathogenic and antibiotic resistant bacteria, which have a higher potential to cause infections that are more difficult to treat. We provided evidence for the harmful impact human contact has on L. rosalia. Also, our results suggest that monitoring of commensal microbiota of protected animal species might be a useful way of sensing the risks of protected species to human exposure.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Animals , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Brazil/epidemiology , Callithrix , Drug Resistance, Bacterial , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests/veterinary
2.
Microbiol Spectr ; : e0255222, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36877037

ABSTRACT

Staphylococcus haemolyticus is one of the most important nosocomial human pathogens frequently isolated in bloodstream and medical device-related infections. However, its mechanisms of evolution and adaptation are still poorly explored. To characterize the strategies of genetic and phenotypic diversity in S. haemolyticus, we analyzed an invasive strain for genetic and phenotypic stability after serial passage in vitro in the absence and presence of beta-lactam antibiotics. We performed pulsed-field gel electrophoresis (PFGE) of the culture and analyzed five colonies at seven time points during stability assays for beta-lactam susceptibility, hemolysis, mannitol fermentation, and biofilm production. We compared their whole genomes and performed phylogenetic analysis based on core single-nucleotide polymorphisms (SNPs). We observed a high instability in the PFGE profiles at the different time points in the absence of antibiotic. Analysis of WGS data for individual colonies showed the occurrence of six large-scale genomic deletions within the oriC environ, smaller deletions in non-oriC environ regions, and nonsynonymous mutations in clinically relevant genes. The regions of deletion and point mutations included genes encoding amino acid and metal transporters, resistance to environmental stress and beta-lactams, virulence, mannitol fermentation, metabolic processes, and insertion sequence (IS) elements. Parallel variation was detected in clinically significant phenotypic traits such as mannitol fermentation, hemolysis, and biofilm formation. In the presence of oxacillin, PFGE profiles were overall stable over time and mainly corresponded to a single genomic variant. Our results suggest that S. haemolyticus populations are composed of subpopulations of genetic and phenotypic variants. The maintenance of subpopulations in different physiological states may be a strategy to adapt rapidly to stress situations imposed by the host, particularly in the hospital environment. IMPORTANCE The introduction of medical devices and antibiotics into clinical practice have substantially improved patient quality of life and contributed to extended life expectancy. One of its most cumbersome consequences was the emergence of medical device-associated infections caused by multidrug-resistant and opportunistic bacteria such as Staphylococcus haemolyticus. However, the reason for this bacterium's success is still elusive. We found that in the absence of environmental stresses, S. haemolyticus can spontaneously produce subpopulations of genomic and phenotypic variants with deletions/mutations in clinically relevant genes. However, when exposed to selective pressures, such as the presence of antibiotics, a single genomic variant will be recruited and become dominant. We suggest that the maintenance of these cell subpopulations in different physiological states is an extremely effective strategy to adapt to stresses imposed by the host or the infection environment and might contribute for S. haemolyticus survival and persistence in the hospital.

3.
J Glob Antimicrob Resist ; 31: 228-235, 2022 12.
Article in English | MEDLINE | ID: mdl-36202202

ABSTRACT

OBJECTIVES: In this study, we aimed to assess the extent of dissemination of methicillin-resistant Mammaliicoccus sciuri in animal farms in Tunisia and evaluate the distribution of virulence and methicillin resistance genes in the M. sciuri population. METHODS: Staphylococci and mammaliicocci isolated from unhealthy animals and healthy humans from adjacent farms in Tunisia were characterized for antimicrobial susceptibility, biofilm formation, agglutination, and hemolysis abilities. Mammaliicoccus sciuri relatedness and content in antibiotic resistance and virulence genes were analyzed by whole-genome sequencing (WGS). RESULTS: Mammaliicoccus sciuri was the most prevalent species (46.2%), showing the highest resistance rates to fusidic acid (94.6%), oxacillin (73%), penicillin (40.5%), clindamycin (37%), ciprofloxacin (27%), and cefoxitin (24.3%). Some isolates carried genes encoding resistance to nine different antibiotic classes. mecA was found in 35% of M. sciuri and mecC in 16.2%. All isolates carrying mecC were of S. sciuri subspecies carnaticus and carried the hybrid element SCCmec-mecC. Mammaliicoccus sciuri were able to produce strong biofilm (27%) and have clumping ability (16%). Additionally, they carried genes for capsule production (cap8, 100%), iron-regulated surface determinants (isdE, 24%; isdG, 3%), and virulence regulation (clpC and clpP, 100%). Single nucleotide polymorphisms (SNPs) analysis showed that 17 M. sciuri cross-transmission events probably occurred between different animal species and farms. Moreover, SCCmec was estimated to have been acquired five times by S. sciuri subsp. carnaticus. CONCLUSION: Multidrug resistant and pathogenic M. sciuri were frequently disseminated between different animal species within the farm environment. mecA and mecC can be disseminated by both frequent acquisition of the SCCmec element and clonal dissemination.


Subject(s)
Animals, Domestic , Methicillin Resistance , Animals , Humans , Methicillin Resistance/genetics , Tunisia , Staphylococcus
4.
Front Microbiol ; 13: 1000737, 2022.
Article in English | MEDLINE | ID: mdl-36246270

ABSTRACT

Staphylococcus epidermidis is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, S. epidermidis has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat due to their ability to form biofilms and accumulate resistance to almost all classes of antimicrobials. Thus new preventive and therapeutic strategies are urgently needed. However, the molecular mechanisms associated with S. epidermidis colonisation and disease are still poorly understood. A deeper understanding of the metabolic and cellular processes associated with response to environmental factors characteristic of SE ecological niches in health and disease might provide new clues on colonisation and disease processes. Here we studied the impact of pH conditions, mimicking the skin pH (5.5) and blood pH (7.4), in a S. epidermidis commensal strain by means of next-generation proteomics and 1H NMR-based metabolomics. Moreover, we evaluated the metabolic changes occurring during a sudden pH change, simulating the skin barrier break produced by a catheter. We found that exposure of S. epidermidis to skin pH induced oxidative phosphorylation and biosynthesis of peptidoglycan, lipoteichoic acids and betaine. In contrast, at blood pH, the bacterial assimilation of monosaccharides and its oxidation by glycolysis and fermentation was promoted. Additionally, several proteins related to virulence and immune evasion, namely extracellular proteases and membrane iron transporters were more abundant at blood pH. In the situation of an abrupt skin-to-blood pH shift we observed the decrease in the osmolyte betaine and changes in the levels of several metabolites and proteins involved in cellular redoxl homeostasis. Our results suggest that at the skin pH S. epidermidis cells are metabolically more active and adhesion is promoted, while at blood pH, metabolism is tuned down and cells have a more virulent profile. pH increase during commensal-to-pathogen conversion appears to be a critical environmental signal to the remodelling of the S. epidermidis metabolism toward a more pathogenic state. Targeting S. epidermidis proteins induced by pH 7.4 and promoting the acidification of the medical device surface or surrounding environment might be new strategies to treat and prevent S. epidermidis infections.

5.
Microbiol Spectr ; 10(5): e0248321, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36094182

ABSTRACT

In a study of antibiotic resistance in Staphylococcus aureus, specific cell wall mutants were previously generated for the peptidoglycan biosynthesis gene murF, by the insertion of an integrative plasmid. A collection of 30 independent mutants was obtained, and all harbored a variable number of copies of the inserted plasmid, arranged in tandem in the chromosome. Of the 30 mutants, only 3, F9, F20 and F26, with a lower number of plasmid copies, showed an altered peptidoglycan structure, lower resistance to ß-lactams and a different loss-of-function mutation in rho gene, that encodes a transcription termination factor. The rho mutations were found to correlate with the level of oxacillin resistance, since genetic complementation with rho gene reestablished the resistance and cell wall parental profile in F9, F20 and F26 strains. Furthermore, complementation with rho resulted in the amplification of the number of plasmid tandem repeats, suggesting that Rho enabled events of recombination that favored a rearrangement in the chromosome in the region of the impaired murF gene. Although the full mechanism of reversion of the cell wall damage was not fully elucidated, we showed that Rho is involved in the recombination process that mediates the tandem amplification of exogeneous DNA fragments inserted into the chromosome. IMPORTANCE The cell wall of bacteria, namely, peptidoglycan, is the target of several antibiotic classes such as ß-lactams. Staphylococcus aureus is well known for its capacity to adapt to antibiotic stress and develop resistance strategies, namely, to ß-lactams. In this context, the construction of cell wall mutants provides useful models to study the development of such resistance mechanisms. Here, we characterized a collection of independent mutants, impaired in the same peptidoglycan biosynthetic step, obtained through the insertion of a plasmid in the coding region of murF gene. S. aureus demonstrated the capacity to overcome the cell wall damage by amplifying the copy number of the inserted plasmid, through an undescribed mechanism that involves the Rho transcription termination factor.


Subject(s)
Cell Wall , Genome, Bacterial , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactams/analysis , Cell Wall/chemistry , Microbial Sensitivity Tests , Oxacillin/analysis , Peptidoglycan/chemistry , Staphylococcus aureus/genetics , Gene Amplification
6.
Microbiol Spectr ; 10(4): e0067422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35695524

ABSTRACT

The increasing threat of drug resistance and a stagnated pipeline of novel therapeutics endanger the eradication of tuberculosis. Beta-lactams constitute promising additions to the current therapeutic arsenal and two carbapenems are included in group C of medicines recommended by the WHO for use in longer multidrug-resistant tuberculosis regimens. However, the determinants underlining diverse Mycobacterium tuberculosis phenotypes to beta-lactams remain largely undefined. To decipher these, we present a proof-of-concept study based on a large-scale beta-lactam susceptibility screening for 172 M. tuberculosis clinical isolates from Portugal, including 72 antimycobacterial drug-resistant strains. MICs were determined for multiple beta-lactams and strains were subjected to whole-genome sequencing to identify core-genome single-nucleotide variant-based profiles. Global and cell wall-targeted approaches were then followed to detect putative drivers of beta-lactam response. We found that drug-resistant strains were more susceptible to beta-lactams, but significant differences were not observed between distinct drug-resistance profiles. Sublineage 4.3.4.2 strains were significantly more susceptible to beta-lactams, while the contrary was observed for Beijing and 4.1.2.1 sublineages. While mutations in beta-lactamase or cell wall biosynthesis genes were uncommon, a rise in beta-lactam MICs was detected in parallel with the accumulation of mutations in peptidoglycan cross-linking or cell division genes. Finally, we exposed that putative beta-lactam resistance markers occurred in genes for which relevant roles in cell wall processes have been ascribed, such as rpfC or pknA. Genetic studies to validate the relevance of the identified mutations for beta-lactam susceptibility and further improvement of the phenotype-genotype associations are needed in the future. IMPORTANCE Associations between differential M. tuberculosis beta-lactam phenotypes and preexisting antimycobacterial drug resistance, strain sublineage, or specific mutational patterns were established. Importantly, we reveal that highly drug-resistant isolates of sublineage 4.3.4.2 have an increased susceptibility to beta-lactams compared with other strains. Thus, directing beta-lactams to treat infections by specific M. tuberculosis strains and refraining its use from others emerges as a potentially important strategy to avoid resistance development. Individual mutations in blaC or genes encoding canonical beta-lactam targets, such as peptidoglycan transpeptidases, are infrequent and do not greatly impact the MICs of potent carbapenem plus clavulanic acid combinations. An improved understanding of the global effect of cumulative mutations in relevant gene sets for peptidoglycan and cell division processes on beta-lactam susceptibility is also provided.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Anti-Bacterial Agents/pharmacology , Carbapenems , Humans , Microbial Sensitivity Tests , Peptidoglycan , Tuberculosis/microbiology , beta-Lactams/pharmacology
7.
Acta Med Port ; 35(1): 36-41, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34755594

ABSTRACT

INTRODUCTION: Healthcare associated infections due to carbapenem-resistant Klebsiella pneumoniae (CRKP) are a major concern in Portuguese hospitals. Whole genome sequencing (WGS) can improve infection control, but this practice is not routinely used by hospital clinical laboratories in Portugal. We simulated the investigation of a CRKP outbreak based on WGS, with the aim of determining, in the minimum possible time, genetic relatedness between CRKP clinical and environmental isolates. MATERIAL AND METHODS: Ten CRKP clinical isolates routinely obtained in the hospital laboratory were used. Forty environmental samples - from sinks and sink drains of ward rooms - were collected. Environmental samples were plated on selective media and presumptive CRKP colonies were isolated. Total DNA was extracted from all putative CRKP isolates and sequenced. Clonal relatedness was determined by multi-locus sequence typing and core genome single nucleotide polymorphism analysis; the presence of carbapenemase genes was evaluated. RESULTS: Clinical isolates were characterized in 48 hours: eight strains were confirmed as CRKP, of which six were of ST13 and carried blaKPC-3. Environmental samples results were obtained in six days: eight CRKP were isolated from which five were of ST13 and carried blaKPC-3. Clinical and environmental ST13 isolates were highly related: ten (of 11) isolates differed from each other in < 0.001% of 2 172 367 core nucleotides. DISCUSSION: WGS can be used as a high-resolution effective tool to investigate healthcare associated infections and track routes of dissemination in real-time. CONCLUSION: In Portugal, routine use of WGS to improve infection control could thrive through collaborative initiatives between hospitals and research institutes.


Introdução: As infeções associadas aos cuidados de saúde por Klebsiella pneumoniae resistente aos carbapenemos (CRKP) são uma preocupação nos hospitais portugueses. A sequenciação total do genoma [whole genome sequencing (WGS)] pode ajudar no controlo de infecção, mas esta prática não é comummente utilizada nos laboratórios clínicos hospitalares em Portugal. O objetivo deste estudo foi simular a investigação de um surto causado por CRKP, utilizando WGS. Pretendia-se testar a utilização desta técnica e determinar, no menor tempo possível, relações genéticas entre estirpes. Material e Métodos: Foram analisados dez isolados clínicos de CRKP. Foram obtidas quarenta amostras ambientais que foram inoculadas em meio seletivo para isolamento de colónias sugestivas de CRKP e depois sequenciado o DNA total dos isolados presumptivamente identificados como CRKP A relação clonal entre as estirpes foi determinada por multi-locus sequence typing e análise de single nucleotide polymorphisms no genoma core. Foi determinada a presença de genes de carbapenemases. Resultados: Os isolados clínicos foram caraterizados em 48 horas: oito isolados foram confirmados como CRKP. A maioria pertencia ao ST13 (n = 6) e possuía o gene blaKPC-3. As amostras ambientais foram caraterizadas em seis dias: foram isoladas oito CRKP, das quais cinco eram ST13 e continham o gene blaKPC-3. Os isolados ST13 clínicos e ambientais eram muito semelhantes entre si: dez dos 11 isolados diferiam entre si em menos de 0,001% dos 2 172 367 nucleótidos core analisados. Discussão: A sequenciação total do genoma pode ser usada como uma ferramenta útil para investigar infecções nosocomiais e rastrear cadeias de disseminação em tempo real. Conclusão: Em Portugal, o uso desta técnica em controlo de infecção pode ser implementado através de colaborações entre hospitais e institutos de investigação.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Disease Outbreaks , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Laboratories, Clinical , Microbial Sensitivity Tests , Multilocus Sequence Typing , Whole Genome Sequencing
8.
Front Microbiol ; 12: 663768, 2021.
Article in English | MEDLINE | ID: mdl-34163443

ABSTRACT

Biofilm formation has been shown to be critical to the success of uropathogens. Although Staphylococcus saprophyticus is a common cause of urinary tract infections, its biofilm production capacity, composition, genetic basis, and origin are poorly understood. We investigated biofilm formation in a large and diverse collection of S. saprophyticus (n = 422). Biofilm matrix composition was assessed in representative strains (n = 63) belonging to two main S. saprophyticus lineages (G and S) recovered from human infection, colonization, and food-related environment using biofilm detachment approach. To identify factors that could be associated with biofilm formation and structure variation, we used a pangenome-wide association study approach. Almost all the isolates (91%; n = 384/422) produced biofilm. Among the 63 representative strains, we identified eight biofilm matrix phenotypes, but the most common were composed of protein or protein-extracellular DNA (eDNA)-polysaccharides (38%, 24/63 each). Biofilms containing protein-eDNA-polysaccharides were linked to lineage G and environmental isolates, whereas protein-based biofilms were produced by lineage S and infection isolates (p < 0.05). Putative biofilm-associated genes, namely, aas, atl, ebpS, uafA, sasF, sasD, sdrH, splE, sdrE, sdrC, sraP, and ica genes, were found with different frequencies (3-100%), but there was no correlation between their presence and biofilm production or matrix types. Notably, icaC_1 was ubiquitous in the collection, while icaR was lineage G-associated, and only four strains carried a complete ica gene cluster (icaADBCR) except one that was without icaR. We provided evidence, using a comparative genomic approach, that the complete icaADBCR cluster was acquired multiple times by S. saprophyticus and originated from other coagulase-negative staphylococci. Overall, the composition of S. saprophyticus biofilms was distinct in environmental and clinical isolates, suggesting that modulation of biofilm structure could be a key step in the pathogenicity of these bacteria. Moreover, biofilm production in S. saprophyticus is ica-independent, and the complete icaADBCR was acquired from other staphylococci.

9.
Antimicrob Agents Chemother ; 65(7): e0268520, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33941519

ABSTRACT

Staphylococcus saprophyticus is a common pathogen of the urinary tract, a heavy metal-rich environment, but information regarding its heavy metal resistance is unknown. We investigated 422 S. saprophyticus isolates from human infection and colonization/contamination, animals, and environmental sources for resistance to copper, zinc, arsenic, and cadmium using the agar dilution method. To identify the genes associated with metal resistance and assess possible links to pathogenicity, we accessed the whole-genome sequence of all isolates and used in silico and pangenome-wide association approaches. The MIC values for copper and zinc were uniformly high (1,600 mg/liter). Genes encoding copper efflux pumps (copA, copB, copZ, mco, and csoR) and zinc transporters (zinT, czrAB, znuBC, and zur) were abundant in the population (20 to 100%). Arsenic and cadmium showed various susceptibility levels. Genes encoding the ars operon (arsRDABC), an ABC transporter and a two-component permease, were linked to resistance to arsenic (MICs ≥ 1,600 mg/liter; 14% [58/422]; P < 0.05). At least three cad genes (cadA or cadC and cadD-cadX or czrC) and genes encoding multidrug efflux pumps and hyperosmoregulation in acidified conditions were associated with resistance to cadmium (MICs ≥ 200 mg/liter; 20% [85/422]; P < 0.05). These resistance genes were frequently carried by mobile genetic elements. Resistance to arsenic and cadmium were linked to human infection and a clonal lineage originating in animals (P < 0.05). Altogether, S. saprophyticus was highly resistant to heavy metals and accumulated multiple metal resistance determinants. The highest arsenic and cadmium resistance levels were associated with infection, suggesting resistance to these metals is relevant for S. saprophyticus pathogenicity.


Subject(s)
Arsenic , Metals, Heavy , Animals , Cadmium , Copper , Humans , Microbial Sensitivity Tests , Staphylococcus saprophyticus
10.
Emerg Infect Dis ; 27(3): 880-893, 2021 03.
Article in English | MEDLINE | ID: mdl-33622483

ABSTRACT

Staphylococcus saprophyticus is a primary cause of community-acquired urinary tract infections (UTIs) in young women. S. saprophyticus colonizes humans and animals but basic features of its molecular epidemiology are undetermined. We conducted a phylogenomic analysis of 321 S. saprophyticus isolates collected from human UTIs worldwide during 1997-2017 and 232 isolates from human UTIs and the pig-processing chain in a confined region during 2016-2017. We found epidemiologic and genomic evidence that the meat-production chain is a major source of S. saprophyticus causing human UTIs; human microbiota is another possible origin. Pathogenic S. saprophyticus belonged to 2 lineages with distinctive genetic features that are globally and locally disseminated. Pangenome-wide approaches identified a strong association between pathogenicity and antimicrobial resistance, phages, platelet binding proteins, and an increased recombination rate. Our study provides insight into the origin, transmission, and population structure of pathogenic S. saprophyticus and identifies putative new virulence factors.


Subject(s)
Community-Acquired Infections , Staphylococcal Infections , Urinary Tract Infections , Animals , Humans , Staphylococcus saprophyticus , Swine , Virulence Factors
11.
Microorganisms ; 8(12)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260448

ABSTRACT

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST398 was recovered from infections in humans exposed to animals, raising public health concerns. However, contact with food producing chain as a means of transmission of LA-MRSA to humans remains poorly understood. We aimed to assess if pork production chain is a source of MRSA ST398 for human colonization and infection. MRSA from live pigs, meat, the environment, and slaughterhouse workers were analyzed by Pulsed-Field Gel Electrophoresis (PFGE), spa, MLST typing, SNPs and for antibiotic resistance and virulence gene profiles. We compared core and accessory genomes of MRSA ST398 isolated from slaughterhouse and hospital. We detected MRSA ST398 (t011, t108, t1451) along the entire pork production chain (live pigs: 60%; equipment: 38%; meat: 23%) and in workers (40%). All MRSA ST398 were multidrug resistant, and the majority carried genes encoding biocide resistance and enterotoxins. We found 23 cross-transmission events between live pigs, meat, and workers (6-55 SNPs). MRSA ST398 from infection and slaughterhouse environment belonged to the same clonal type (ST398, t011, SCCmec V), but differed in 321-378 SNPs. Pork production chain can be a source of MRSA ST398 for colonization of human slaughterhouse workers, which can represent a risk of subsequent meat contamination and human infection.

12.
Front Microbiol ; 10: 1971, 2019.
Article in English | MEDLINE | ID: mdl-31507574

ABSTRACT

Background: Staphylococcus epidermidis is a common skin commensal that has emerged as a pathogen in hospitals, mainly related to medical devices-associated infections. Noteworthy, infection rates by S. epidermidis have the tendency to rise steeply in next decades together with medical devices use and immunocompromized population growth. Staphylococcus epidermidis population structure includes two major clonal lineages (A/C and B) that present contrasting pathogenic potentials. To address this distinction and explore the basis of increased pathogenicity of A/C lineage, we performed a detailed comparative analysis using phylogenetic and integrated pangenome-wide-association study (panGWAS) approaches and compared the lineages's phenotypes in in vitro conditions mimicking carriage and infection. Results: Each S. epidermidis lineage had distinct phenotypic signatures in skin and infection conditions and differed in genomic content. Combination of phenotypic and genotypic data revealed that both lineages were well adapted to skin environmental cues. However, they appear to occupy different skin niches, perform distinct biological functions in the skin and use different mechanisms to complete the same function: lineage B strains showed evidence of specialization to survival in microaerobic and lipid rich environment, characteristic of hair follicle and sebaceous glands; lineage A/C strains showed evidence for adaption to diverse osmotic and pH conditions, potentially allowing them to occupy a broader and more superficial skin niche. In infection conditions, A/C strains had an advantage, having the potential to bind blood-associated host matrix proteins, form biofilms at blood pH, resist antibiotics and macrophage acidity and to produce proteases. These features were observed to be rare in the lineage B strains. PanGWAS analysis produced a catalog of putative S. epidermidis virulence factors and identified an epidemiological molecular marker for the more pathogenic lineage. Conclusion: The prevalence of A/C lineage in infection is probably related to a higher metabolic and genomic versatility that allows rapid adaptation during transition from a commensal to a pathogenic lifestyle. The putative virulence and phenotypic factors associated to A/C lineage constitute a reliable framework for future studies on S. epidermidis pathogenesis and the finding of an epidemiological marker for the more pathogenic lineage is an asset for the management of S. epidermidis infections.

13.
Nat Commun ; 9(1): 5034, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30487573

ABSTRACT

Some of the most common infectious diseases are caused by bacteria that naturally colonise humans asymptomatically. Combating these opportunistic pathogens requires an understanding of the traits that differentiate infecting strains from harmless relatives. Staphylococcus epidermidis is carried asymptomatically on the skin and mucous membranes of virtually all humans but is a major cause of nosocomial infection associated with invasive procedures. Here we address the underlying evolutionary mechanisms of opportunistic pathogenicity by combining pangenome-wide association studies and laboratory microbiology to compare S. epidermidis from bloodstream and wound infections and asymptomatic carriage. We identify 61 genes containing infection-associated genetic elements (k-mers) that correlate with in vitro variation in known pathogenicity traits (biofilm formation, cell toxicity, interleukin-8 production, methicillin resistance). Horizontal gene transfer spreads these elements, allowing divergent clones to cause infection. Finally, Random Forest model prediction of disease status (carriage vs. infection) identifies pathogenicity elements in 415 S. epidermidis isolates with 80% accuracy, demonstrating the potential for identifying risk genotypes pre-operatively.


Subject(s)
Skin Diseases/microbiology , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/pathogenicity , Genome, Bacterial/genetics , Genome-Wide Association Study , Genotype , Humans , Interleukin-8/metabolism
14.
Front Microbiol ; 9: 2723, 2018.
Article in English | MEDLINE | ID: mdl-30483235

ABSTRACT

The understanding of the mechanisms of antibiotic resistance development are fundamental to alert and preview beforehand, the large scale dissemination of resistance to antibiotics, enabling the design of strategies to prevent its spread. The mecA-mediated methicillin resistance conferring resistance to broad-spectrum ß-lactams is globally spread in staphylococci including hospitals, farms and community environments, turning ineffective the most widely used and efficient class of antibiotics to treat staphylococcal infections. The use of whole genome sequencing (WGS) technologies at a bacterial population level has provided a considerable progress in the identification of key steps that led to mecA-mediated ß-lactam resistance development and dissemination. Data obtained from multiple studies indicated that mecA developed from a harmless core gene (mecA1) encoding the penicillin-binding protein D (PbpD) from staphylococcal species of animal origin (S. sciuri group) due to extensive ß-lactams use in human created environments. Emergence of the resistance determinant involved distortion of PbpD active site, increase in mecA1 expression, addition of regulators (mecR1, mecI) and integration into a mobile genetic element (SCCmec). SCCmec was then transferred into species of coagulase-negative staphylococci (CoNS) that are able to colonize both animals and humans and subsequently transferred to S. aureus of human origin. Adaptation of S. aureus to the exogenously acquired SCCmec involved, deletion and mutation of genes implicated in general metabolism (auxiliary genes) and general stress response and the adjustment of metabolic networks, what was accompanied by an increase in ß-lactams minimal inhibitory concentration and the transition from a heterogeneous to homogeneous resistance profile. Nowadays, methicillin-resistant S. aureus (MRSA) carrying SCCmec constitutes one of the most important worldwide pandemics. The stages of development of mecA-mediated ß-lactam resistance described here may serve as a model for previewing and preventing the emergence of resistance to other classes of antibiotics.

15.
ACS Appl Mater Interfaces ; 9(34): 28157-28167, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28782933

ABSTRACT

ZnO nanoparticles (NPs) are arising as promising novel antibiotics toward device-related infections. The surface functionalization of Zn, a novel resorbable biomaterial, with ZnO NPs could present an effective solution to overcome such a threat. In this sense, the antibacterial and antibiofilm activity of nano- and microsized ZnO coatings was studied against clinically relevant bacteria, methicillin resistant Staphylococcus aureus (MRSA). The bacterial viability of planktonic and biofilm cells together with the corresponding biofilm structures revealed that only the nanosized ZnO coating had an antibiofilm effect. To elucidate this effect, a novel approach was taken: preconditioning of bacteria with this ZnO coating followed by exposure to subinhibitory concentrations of antibiotics with well-known modes of actions. This approached revealed (i) a decreased biofilm formation in combination with gentamycin, targeting protein synthesis, and (ii) an increased biofilm formation in the presence of rifampicin and vancomycin, acting on RNA and cell wall biosynthesis, respectively. The increased bacteria resistance to these two antibiotics gave new insights into the antibiofilm effect of this nanosized ZnO coating. The synergistic effect observed for gentamycin opened new perspectives for the design of effective solutions against implant-related infections. During the in vitro degradation of this nanosized ZnO-coated Zn, a specific corrosion product, hopeite [Zn3(PO4)2], was depicted. Interestingly, the increased deposition of hopeite-derived compounds on MRSA cells surface seemed to be related to unhealthy and dead bacterial cells. This observation suggested that hopeite may well play a key role in this antibiofilm activity. The results obtained herein shed light on the possible antibacterial effect of a nanosized ZnO coating, and strengthened its antimicrobial (antibacterial and antifungal) potential, therefore providing a potentially effective material to overcome the growing trend of implant-related infections.


Subject(s)
Zinc Oxide/chemistry , Anti-Bacterial Agents , Biofilms , Methicillin , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Vancomycin
16.
Article in English | MEDLINE | ID: mdl-28373201

ABSTRACT

Several lines of evidence indicate that the most primitive staphylococcal species, those of the Staphylococcus sciuri group, were involved in the first stages of evolution of the staphylococcal cassette chromosome mec (SCCmec), the genetic element carrying the ß-lactam resistance gene mecA However, many steps are still missing from this evolutionary history. In particular, it is not known how mecA was incorporated into the mobile element SCC prior to dissemination among Staphylococcus aureus and other pathogenic staphylococcal species. To gain insights into the possible contribution of several species of the Staphylococcus sciuri group to the assembly of SCCmec, we sequenced the genomes of 106 isolates, comprising S. sciuri (n = 76), Staphylococcus vitulinus (n = 18), and Staphylococcus fleurettii (n = 12) from animal and human sources, and characterized the native location of mecA and the SCC insertion site by using a variety of comparative genomic approaches. Moreover, we performed a single nucleotide polymorphism (SNP) analysis of the genomes in order to understand SCCmec evolution in relation to phylogeny. We found that each of three species of the S. sciuri group contributed to the evolution of SCCmec: S. vitulinus and S. fleurettii contributed to the assembly of the mec complex, and S. sciuri most likely provided the mobile element in which mecA was later incorporated. We hypothesize that an ancestral SCCmec III cassette (an element carried by one of the most epidemic methicillin-resistant S. aureus clones) originated in S. sciuri possibly by a recombination event in a human host or a human-created environment and later was transferred to S. aureus.


Subject(s)
Chromosomes, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Evolution, Molecular , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide/genetics , Staphylococcus/drug effects , Staphylococcus/genetics , beta-Lactam Resistance/genetics
17.
PLoS Genet ; 13(4): e1006674, 2017 04.
Article in English | MEDLINE | ID: mdl-28394942

ABSTRACT

The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA-an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all ß-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the ß-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to ß-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of ß-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics.


Subject(s)
Bacterial Proteins/genetics , Penicillin-Binding Proteins/genetics , Staphylococcal Infections/genetics , Staphylococcus/genetics , beta-Lactam Resistance/genetics , Anti-Bacterial Agents/therapeutic use , Bayes Theorem , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Phylogeny , Polymorphism, Single Nucleotide , Staphylococcal Infections/drug therapy , Staphylococcus/drug effects , beta-Lactams/therapeutic use
18.
PLoS One ; 11(6): e0156653, 2016.
Article in English | MEDLINE | ID: mdl-27249649

ABSTRACT

Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST) has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC) 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS) elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment.


Subject(s)
Recombination, Genetic , Staphylococcus haemolyticus/genetics , Anti-Bacterial Agents/pharmacology , Electrophoresis, Gel, Pulsed-Field , Genes, Bacterial , Microbial Sensitivity Tests , Mutation , Phylogeny , Staphylococcus haemolyticus/classification , Staphylococcus haemolyticus/drug effects
20.
PLoS One ; 11(3): e0151240, 2016.
Article in English | MEDLINE | ID: mdl-26978068

ABSTRACT

Bacterial species comprise related genotypes that can display divergent phenotypes with important clinical implications. Staphylococcus epidermidis is a common cause of nosocomial infections and, critical to its pathogenesis, is its ability to adhere and form biofilms on surfaces, thereby moderating the effect of the host's immune response and antibiotics. Commensal S. epidermidis populations are thought to differ from those associated with disease in factors involved in adhesion and biofilm accumulation. We quantified the differences in biofilm formation in 98 S. epidermidis isolates from various sources, and investigated population structure based on ribosomal multilocus typing (rMLST) and the presence/absence of genes involved in adhesion and biofilm formation. All isolates were able to adhere and form biofilms in in vitro growth assays and confocal microscopy allowed classification into 5 biofilm morphotypes based on their thickness, biovolume and roughness. Phylogenetic reconstruction grouped isolates into three separate clades, with the isolates in the main disease associated clade displaying diversity in morphotype. Of the biofilm morphology characteristics, only biofilm thickness had a significant association with clade distribution. The distribution of some known adhesion-associated genes (aap and sesE) among isolates showed a significant association with the species clonal frame. These data challenge the assumption that biofilm-associated genes, such as those on the ica operon, are genetic markers for less invasive S. epidermidis isolates, and suggest that phenotypic characteristics, such as adhesion and biofilm formation, are not fixed by clonal descent but are influenced by the presence of various genes that are mobile among lineages.


Subject(s)
Biofilms/growth & development , Cross Infection/microbiology , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Biofilms/classification , Humans , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...