Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Brain Commun ; 6(3): fcae137, 2024.
Article in English | MEDLINE | ID: mdl-38741663

ABSTRACT

Stroke is one of the leading causes of disability worldwide. There are many different rehabilitation approaches aimed at improving clinical outcomes for stroke survivors. One of the latest therapeutic techniques is the non-invasive brain stimulation. Among non-invasive brain stimulation, transcranial direct current stimulation has shown promising results in enhancing motor and cognitive recovery both in animal models of stroke and stroke survivors. In this framework, one of the most innovative methods is the bihemispheric transcranial direct current stimulation that simultaneously increases excitability in one hemisphere and decreases excitability in the contralateral one. As bihemispheric transcranial direct current stimulation can create a more balanced modulation of brain activity, this approach may be particularly useful in counteracting imbalanced brain activity, such as in stroke. Given these premises, the aim of the current study has been to explore the recovery after stroke in mice that underwent a bihemispheric transcranial direct current stimulation treatment, by recording their electric brain activity with local field potential and by measuring behavioural outcomes of Grip Strength test. An innovative parameter that explores the complexity of signals, namely the Entropy, recently adopted to describe brain activity in physiopathological states, was evaluated to analyse local field potential data. Results showed that stroke mice had higher values of Entropy compared to healthy mice, indicating an increase in brain complexity and signal disorder due to the stroke. Additionally, the bihemispheric transcranial direct current stimulation reduced Entropy in both healthy and stroke mice compared to sham stimulated mice, with a greater effect in stroke mice. Moreover, correlation analysis showed a negative correlation between Entropy and Grip Strength values, indicating that higher Entropy values resulted in lower Grip Strength engagement. Concluding, the current evidence suggests that the Entropy index of brain complexity characterizes stroke pathology and recovery. Together with this, bihemispheric transcranial direct current stimulation can modulate brain rhythms in animal models of stroke, providing potentially new avenues for rehabilitation in humans.

2.
Geroscience ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776044

ABSTRACT

In recent decades, entropy measures have gained prominence in neuroscience due to the nonlinear behaviour exhibited by neural systems. This rationale justifies the application of methods from the theory of nonlinear dynamics to cerebral activity, aiming to detect and quantify its variability more effectively. In the context of electroencephalogram (EEG) signals, entropy analysis offers valuable insights into the complexity and irregularity of electromagnetic brain activity. By moving beyond linear analyses, entropy measures provide a deeper understanding of neural dynamics, particularly pertinent in elucidating the mechanisms underlying brain aging and various acute/chronic-progressive neurological disorders. Indeed, various pathologies can disrupt nonlinear structuring in neural activity, which may remain undetected by linear methods such as power spectral analysis. Consequently, the utilization of nonlinear tools, including entropy analysis, becomes crucial for capturing these alterations. To establish the relevance of entropy analysis and its potential to discern between physiological and pathological conditions, this review discusses its diverse applications in studying healthy brain aging and neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Various entropy parameters, such as approximate entropy (ApEn), sample entropy (SampEn), multiscale entropy (MSE), and permutation entropy (PermEn), are analysed within this context. By quantifying the complexity and irregularity of EEG signals, entropy analysis may serve as a valuable biomarker for early diagnosis, treatment monitoring, and disease management. Such insights offer clinicians crucial information for devising personalized treatment and rehabilitation plans tailored to individual patients.

3.
Alzheimers Dement ; 20(5): 3567-3586, 2024 May.
Article in English | MEDLINE | ID: mdl-38477378

ABSTRACT

INTRODUCTION: This review examines the concept of cognitive reserve (CR) in relation to brain aging, particularly in the context of dementia and its early stages. CR refers to an individual's ability to maintain or regain cognitive function despite brain aging, damage, or disease. Various factors, including education, occupation complexity, leisure activities, and genetics are believed to influence CR. METHODS: We revised the literature in the context of CR. A total of 842 articles were identified, then we rigorously assessed the relevance of articles based on titles and abstracts, employing a systematic approach to eliminate studies that did not align with our research objectives. RESULTS: We evaluate-also in a critical way-the methods commonly used to define and measure CR, including sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures. The challenges and limitations of these measures are discussed, emphasizing the need for more targeted research to improve the understanding, definition, and measurement of CR. CONCLUSIONS: The review underscores the significance of comprehending CR in the context of both normal and pathological brain aging and emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation in both healthy and neurologically impaired older individuals. HIGHLIGHTS: This review examines the concept of cognitive reserve in brain aging, in the context of dementia and its early stages. We have evaluated the methods commonly used to define and measure cognitive reserve. Sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures are discussed. The review emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation.


Subject(s)
Cognitive Reserve , Humans , Cognitive Reserve/physiology , Dementia , Brain/physiology , Neuroimaging , Aging/physiology
5.
Acta Physiol (Oxf) ; 238(2): e13979, 2023 06.
Article in English | MEDLINE | ID: mdl-37070962

ABSTRACT

AIM: Congestive heart failure (CHF) is a very complex clinical syndrome that may lead to ischemic cerebral hypoxia condition. The aim of the present study is to analyze the effects of CHF on brain activity through electroencephalographic (EEG) complexity measures, like approximate entropy (ApEn). METHODS: Twenty patients with CHF and 18 healthy elderly people were recruited. ApEn values were evaluated in the total spectrum (0.2-47 Hz) and main EEG frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-11 Hz), alpha 2 (11-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-45 Hz) to identify differences between CHF group and control. Moreover, a correlation analysis was performed between ApEn parameters and clinical data (i.e., B-type natriuretic peptides (BNP), New York Heart Association (NYHA), and systolic blood pressure (SBP)) within the CHF group. RESULTS: Statistical topographic maps showed statistically significant differences between the two groups in the total spectrum and theta frequency band. Within the CHF group, significant negative correlations were found between total ApEn and BNP in O2 channel and between theta ApEn and NYHA scores in Fp1, Fp2, and Fz channels; instead, a significant positive correlation was found between theta ApEn and SBP in C3 channel and a nearly significant positive correlation was obtained between theta ApEn and SBP in F4 channel. CONCLUSION: EEG abnormalities in CHF are very similar to those observed in cognitive-impaired patients, suggesting analogies between the effects of neurodegeneration and brain chronic hypovolaemia due to heart disorder and underlying high brain sensitivity to CHF.


Subject(s)
Electroencephalography , Heart Failure , Humans , Aged , Entropy , Brain , Systems Analysis
6.
Sensors (Basel) ; 23(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36991853

ABSTRACT

Different visual stimuli can capture and shift attention into different directions. Few studies have explored differences in brain response due to directional (DS) and non-directional visual stimuli (nDS). To explore the latter, event-related potentials (ERP) and contingent negative variation (CNV) during a visuomotor task were evaluated in 19 adults. To examine the relation between task performance and ERPs, the participants were divided into faster (F) and slower (S) groups based on their reaction times (RTs). Moreover, to reveal ERP modulation within the same subject, each recording from the single participants was subdivided into F and S trials based on the specific RT. ERP latencies were analysed between conditions ((DS, nDS); (F, S subjects); (F, S trials)). Correlation was analysed between CNV and RTs. Our results reveal that the ERPs' late components are modulated differently by DS and nDS conditions in terms of amplitude and location. Differences in ERP amplitude, location and latency, were also found according to subjects' performance, i.e., between F and S subjects and trials. In addition, results show that the CNV slope is modulated by the directionality of the stimulus and contributes to motor performance. A better understanding of brain dynamics through ERPs could be useful to explain brain states in healthy subjects and to support diagnoses and personalized rehabilitation in patients with neurological diseases.


Subject(s)
Brain , Evoked Potentials , Adult , Humans , Reaction Time/physiology , Evoked Potentials/physiology , Brain/physiology , Contingent Negative Variation , Attention/physiology , Electroencephalography
7.
Geroscience ; 45(3): 1857-1867, 2023 06.
Article in English | MEDLINE | ID: mdl-36692591

ABSTRACT

Hyperventilation (HV) is a voluntary activity that causes changes in the neuronal firing characteristics noticeable in the electroencephalogram (EEG) signals. HV-related changes have been scribed to modulation of pO2/pCO2 blood contents. Therefore, an HV test is routinely used for highlighting brain abnormalities including those depending to neurobiological mechanisms at the basis of neurodegenerative disorders. The main aim of the present paper is to study the effectiveness of HV test in modifying the functional connectivity from the EEG signals that can be typical of a prodromal state of Alzheimer's disease (AD), the Mild Cognitive Impairment prodromal to Alzheimer condition. MCI subjects and a group of age-matched healthy elderly (Ctrl) were enrolled and subjected to EEG recording during HV, eyes-closed (EC), and eyes-open (EO) conditions. Since the cognitive decline in MCI seems to be a progressive disconnection syndrome, the approach we used in the present study is the graph theory, which allows to describe brain networks with a series of different parameters. Small world (SW), modularity (M), and global efficiency (GE) indexes were computed among the EC, EO, and HV conditions comparing the MCI group to the Ctrl one. All the three graph parameters, computed in the typical EEG frequency bands, showed significant changes among the three conditions, and more interestingly, a significant difference in the GE values between the MCI group and the Ctrl one was obtained, suggesting that the combination of HV test and graph theory parameters should be a powerful tool for the detection of possible cerebral dysfunction and alteration.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Hyperventilation , Electroencephalography , Brain , Cognitive Dysfunction/diagnosis , Alzheimer Disease/diagnosis
9.
Geroscience ; 45(2): 1131-1145, 2023 04.
Article in English | MEDLINE | ID: mdl-36538178

ABSTRACT

Aging is the inevitable biological process that results in a progressive structural and functional decline associated with alterations in the resting/task-related brain activity, morphology, plasticity, and functionality. In the present study, we analyzed the effects of physiological aging on the human brain through entropy measures of electroencephalographic (EEG) signals. One hundred sixty-one participants were recruited and divided according to their age into young (n = 72) and elderly (n = 89) groups. Approximate entropy (ApEn) values were calculated in each participant for each EEG recording channel and both for the total EEG spectrum and for each of the main EEG frequency rhythms: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-11 Hz), alpha 2 (11-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-45 Hz), to identify eventual statistical differences between young and elderly. To demonstrate that the ApEn represents the age-related brain changes, the computed ApEn values were used as features in an age-related classification of subjects (young vs elderly), through linear, quadratic, and cubic support vector machine (SVM). Topographic maps of the statistical results showed statistically significant difference between the ApEn values of the two groups found in the total spectrum and in delta, theta, beta 2, and gamma. The classifiers (linear, quadratic, and cubic SVMs) revealed high levels of accuracy (respectively 93.20 ± 0.37, 93.16 ± 0.30, 90.62 ± 0.62) and area under the curve (respectively 0.95, 0.94, 0.93). ApEn seems to be a powerful, very sensitive-specific measure for the study of cognitive decline and global cortical alteration/degeneration in the elderly EEG activity.


Subject(s)
Cognitive Dysfunction , Electroencephalography , Humans , Aged , Entropy , Electroencephalography/methods , Brain , Aging/physiology
10.
Stroke ; 54(2): 499-508, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36416129

ABSTRACT

BACKGROUND: The objective of the present study is to explore whether acute stroke may result in changes in brain network architecture by electroencephalography functional coupling analysis and graph theory. METHODS: Ninety acute stroke patients and 110 healthy subjects were enrolled in different clinical centers in Rome, Italy, starting from 2013, and for each one electroencephalographies were recorded within <15 days from stroke onset. All patients were clinically evaluated through National Institutes of Health Stroke Scale, Barthel Index, and Action Research Arm Test in the acute stage and during the follow-up. Functional connectivity was assessed using Total Coherence and Small World (SW) by comparing the affected and the unaffected hemisphere between groups (Stroke versus Healthy). Correlations between connectivity and poststroke recovery scores have been carried out. RESULTS: In stroke patients, network hemispheric asymmetry, in terms of Total Coherence, was mainly detected in the affected hemisphere with lower values in Delta, Theta, Alpha1, and Alpha2 (P=0.000001), whereas the unaffected hemisphere showed lower Total Coherence only in Delta and Theta (P=0.000001). SW revealed a significant difference only in the affected hemisphere in all electroencephalography bands (lower SW in Delta (P=0.000003), Theta (P=0.000003), Alpha1 (P=0.000203), and Alpha2 (P=0.028) and higher SW in Beta2 (P=0.000002) and Gamma (P=0.000002)). We also found significant correlations between SW and improvement in National Institutes of Health Stroke Scale (Theta SW: r=-0.2808), Barthel Index (Delta SW: r=0.3692; Theta SW: r=0.3844, Beta2 SW: r=-0.3589; Gamma SW: r=-04948), and Action Research Arm Test (Beta2 SW: r=-0.4274; Gamma SW: r=-0.4370). CONCLUSIONS: These findings demonstrated changes in global functional connectivity and in the balance of network segregation and integration induced by acute stroke. The findings on the correlations between clinical outcome(s) and poststroke network architecture indicate the possibility to identify a predictive index of recovery useful to address and personalize the rehabilitation program.


Subject(s)
Electroencephalography , Stroke , Humans , Prognosis , Brain , Brain Mapping
11.
Front Neurorobot ; 17: 1289406, 2023.
Article in English | MEDLINE | ID: mdl-38250599

ABSTRACT

More than 10 million Europeans show signs of mild cognitive impairment (MCI), a transitional stage between normal brain aging and dementia stage memory disorder. The path MCI takes can be divergent; while some maintain stability or even revert to cognitive norms, alarmingly, up to half of the cases progress to dementia within 5 years. Current diagnostic practice lacks the necessary screening tools to identify those at risk of progression. The European patient experience often involves a long journey from the initial signs of MCI to the eventual diagnosis of dementia. The trajectory is far from ideal. Here, we introduce the AI-Mind project, a pioneering initiative with an innovative approach to early risk assessment through the implementation of advanced artificial intelligence (AI) on multimodal data. The cutting-edge AI-based tools developed in the project aim not only to accelerate the diagnostic process but also to deliver highly accurate predictions regarding an individual's risk of developing dementia when prevention and intervention may still be possible. AI-Mind is a European Research and Innovation Action (RIA H2020-SC1-BHC-06-2020, No. 964220) financed between 2021 and 2026. First, the AI-Mind Connector identifies dysfunctional brain networks based on high-density magneto- and electroencephalography (M/EEG) recordings. Second, the AI-Mind Predictor predicts dementia risk using data from the Connector, enriched with computerized cognitive tests, genetic and protein biomarkers, as well as sociodemographic and clinical variables. AI-Mind is integrated within a network of major European initiatives, including The Virtual Brain, The Virtual Epileptic Patient, and EBRAINS AISBL service for sensitive data, HealthDataCloud, where big patient data are generated for advancing digital and virtual twin technology development. AI-Mind's innovation lies not only in its early prediction of dementia risk, but it also enables a virtual laboratory scenario for hypothesis-driven personalized intervention research. This article introduces the background of the AI-Mind project and its clinical study protocol, setting the stage for future scientific contributions.

12.
J Neural Eng ; 19(6)2022 11 09.
Article in English | MEDLINE | ID: mdl-36270505

ABSTRACT

Objective.A large part of the cerebral cortex is dedicated to the processing of visual stimuli and there is still much to understand about such processing modalities and hierarchies. The main aim of the present study is to investigate the differences between directional visual stimuli (DS) and non-directional visual stimuli (n-DS) processing by time-frequency analysis of brain electroencephalographic activity during a visuo-motor task. Electroencephalography (EEG) data were divided into four regions of interest (ROIs) (frontal, central, parietal, occipital).Approach.The analysis of the visual stimuli processing was based on the combination of electroencephalographic recordings and time-frequency analysis. Event related spectral perturbations (ERSPs) were computed with spectrum analysis that allow to obtain the average time course of relative changes induced by the stimulus presentation in spontaneous EEG amplitude spectrum.Main results.Visual stimuli processing enhanced the same pattern of spectral modulation in all investigated ROIs with differences in amplitudes and timing. Additionally, statistically significant differences in occipital ROI between the DS and n-DS visual stimuli processing in theta, alpha and beta bands were found.Significance.These evidences suggest that ERSPs could be a useful tool to investigate the encoding of visual information in different brain regions. Because of their simplicity and their capability in the representation of brain activity, the ERSPs might be used as biomarkers of functional recovery for example in the rehabilitation of visual dysfunction and motor impairment following a stroke, as well as diagnostic tool of anomalies in brain functions in neurological diseases tailored to personalized treatments in clinical environment.


Subject(s)
Electroencephalography , Nervous System Physiological Phenomena , Brain/physiology , Cerebral Cortex
13.
Int J Psychophysiol ; 181: 85-94, 2022 11.
Article in English | MEDLINE | ID: mdl-36055410

ABSTRACT

In the human brain, physiological aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission and information flow. However, there is increasing evidence to support the notion that the aged brain has a remarkable level of resilience (i.s. ability to reorganize itself), with the aim of preserving its physiological activity. It is therefore of paramount interest to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated to age-related neurological progressive diseases like Alzheimer's disease. EEG, alone and combined with transcranial magnetic stimulation (TMS-EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated in ecological scenarios including behavioral tasks. In this review, we aimed to provide the reader with updated information about the role of modern methods of EEG and TMS-EEG analysis in the investigation of physiological brain aging and Alzheimer's disease. In particular, we focused on data about cortical connectivity obtained by using readouts such graph theory network brain organization and architecture, and transcranial evoked potentials (TEPs) during TMS-EEG. Overall, findings in the literature support an important potential contribution of such neurophysiological techniques to the understanding of the mechanisms underlying normal brain aging and the early (prodromal/pre-symptomatic) stages of dementia.


Subject(s)
Alzheimer Disease , Aged , Brain/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Humans , Transcranial Magnetic Stimulation/methods
14.
Alzheimers Dement ; 18(12): 2699-2706, 2022 12.
Article in English | MEDLINE | ID: mdl-35388959

ABSTRACT

INTRODUCTION: Dementia in its various forms represents one of the most frightening emergencies for the aging population. Cognitive decline-including Alzheimer's disease (AD) dementia-does not develop in few days; disease mechanisms act progressively for several years before clinical evidence. METHODS: A preclinical stage, characterized by measurable cognitive impairment, but not overt dementia, is represented by mild cognitive impairment (MCI), which progresses to-or, more accurately, is already in a prodromal form of-AD in about half cases; people with MCI are therefore considered the population at risk for AD deserving special attention for validating screening methods. RESULTS: Graph analysis tools, combined with machine learning methods, represent an interesting probe to identify the distinctive features of physiological/pathological brain aging focusing on functional connectivity networks evaluated on electroencephalographic data and neuropsychological/imaging/genetic/metabolic/cerebrospinal fluid/blood biomarkers. DISCUSSION: On clinical data, this innovative approach for early diagnosis might provide more insight into pathophysiological processes underlying degenerative changes, as well as toward a personalized risk evaluation for pharmacological, nonpharmacological, and rehabilitation treatments.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Cognitive Dysfunction/pathology , Alzheimer Disease/pathology , Biomarkers , Machine Learning , Early Diagnosis , Electroencephalography , Disease Progression
15.
Int J Neural Syst ; 32(5): 2250022, 2022 May.
Article in English | MEDLINE | ID: mdl-35435134

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia that involves a progressive and irrevocable decline in cognitive abilities and social behavior, thus annihilating the patient's autonomy. The theoretical assumption that disease-modifying drugs are most effective in the early stages hopefully in the prodromal stage called mild cognitive impairment (MCI) urgently pushes toward the identification of robust and individualized markers of cognitive decline to establish an early pharmacological intervention. This requires the combination of well-established neural mechanisms and the development of increasingly sensitive methodologies. Among the neurophysiological markers of attention and cognition, one of the sub-components of the 'cognitive brain wave' P300 recordable in an odd-ball paradigm -namely the P3b- is extensively regarded as a sensitive indicator of cognitive performance. Several studies have reliably shown that changes in the amplitude and latency of the P3b are strongly related to cognitive decline and aging both healthy and pathological. Here, we used a P3b spatial filter to enhance the electroencephalographic (EEG) characteristics underlying 175 subjects divided into 135 MCI subjects, 20 elderly controls (EC), and 20 young volunteers (Y). The Y group served to extract the P3b spatial filter from EEG data, which was later applied to the other groups during resting conditions with eyes open and without being asked to perform any task. The group of 135 MCI subjects could be divided into two subgroups at the end of a month follow-up: 75 with stable MCI (MCI-S, not converted to AD), 60 converted to AD (MCI-C). The P3b spatial filter was built by means of a signal processing method called Functional Source Separation (FSS), which increases signal-to-noise ratio by using a weighted sum of all EEG recording channels rather than relying on a single, or a small sub-set, of channels. A clear difference was observed for the P3b dynamics at rest between groups. Moreover, a machine learning approach showed that P3b at rest could correctly distinguish MCI from EC (80.6% accuracy) and MCI-S from MCI-C (74.1% accuracy), with an accuracy as high as 93.8% in discriminating between MCI-C and EC. Finally, a comparison of the Bayes factor revealed that the group differences among MCI-S and MCI-C were 138 times more likely to be detected using the P3b dynamics compared with the best performing single electrode (Pz) approach. In conclusion, we propose that P3b as measured through spatial filters can be safely regarded as a simple and sensitive marker to predict the conversion from an MCI to AD status eventually combined with other non-neurophysiological biomarkers for a more precise definition of dementia having neuropathological Alzheimer characteristics.


Subject(s)
Alzheimer Disease , Brain Waves , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnosis , Bayes Theorem , Biomarkers , Cognitive Dysfunction/diagnosis , Disease Progression , Electroencephalography/methods , Humans
16.
Cogn Neurodyn ; 16(2): 297-308, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35401869

ABSTRACT

Brain state in the time preceding the task affects motor performance at single trial level. Aim of the study was to investigate, through a single trial analysis of the Power Spectral Density (PSD) of the cortical sources of EEG rhythms, whether there are EEG markers, which can predict trial-by-trial the subject's performance as measured by the reaction time (RT). 20 healthy adult volunteers performed a specific visuomotor task while continuously recorded with a 64 electrodes EEG. For each single trial, the PSD of the cortical sources of EEG rhythms was obtained from EEG data to cortical current density time series in 12 regions of interest at Brodmann areas level. Results showed a statistically significant increase of posterior and limbic alpha 1 and of frontal beta 2 power, and a reduction of frontal and limbic delta and of temporal alpha 1 power, during triggering stimulus presentation for better performance, namely faster responses. At single trial level, correlation analyses between RTs and significant PSD, revealed positive correlations in frontal delta, temporal alpha 1, and limbic delta bands, and negative ones in frontal beta 2, parietal alpha 1, and occipital alpha 1 bands. Furthermore, the subject's faster responses have been found as correlated with the similarity between the PSD values in parietal and occipital alpha 1. Predicting individual's performance at single trial level, might be extremely useful in the clinical context, since it could allow to launch rehabilitative therapies in the most efficient brain state, avoiding useless interventions.

17.
Geroscience ; 44(3): 1599-1607, 2022 06.
Article in English | MEDLINE | ID: mdl-35344121

ABSTRACT

The objective of the present study is to explore the brain resting state differences between Parkinson's disease (PD) patients and age- and gender-matched healthy controls (elderly) in terms of complexity of electroencephalographic (EEG) signals. One non-linear approach to determine the complexity of EEG is the entropy. In this pilot study, 28 resting state EEGs were analyzed from 13 PD patients and 15 elderly subjects, applying approximate entropy (ApEn) analysis to EEGs in ten regions of interest (ROIs), five for each brain hemisphere (frontal, central, parietal, occipital, temporal). Results showed that PD patients presented statistically higher ApEn values than elderly confirming the hypothesis that PD is characterized by a remarkable modification of brain complexity and globally modifies the underlying organization of the brain. The higher-than-normal entropy of PD patients may describe a condition of low order and consequently low information flow due to an alteration of cortical functioning and processing of information. Understanding the dynamics of brain applying ApEn could be a useful tool to help in diagnosis, follow the progression of Parkinson's disease, and set up personalized rehabilitation programs.


Subject(s)
Parkinson Disease , Aged , Brain , Electroencephalography/methods , Entropy , Humans , Parkinson Disease/diagnosis , Pilot Projects
18.
Brain Sci ; 12(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35326358

ABSTRACT

In recent years, applications of the network science to electrophysiological data have increased as electrophysiological techniques are not only relatively low cost, largely available on the territory and non-invasive, but also potential tools for large population screening. One of the emergent methods for the study of functional connectivity in electrophysiological recordings is graph theory: it allows to describe the brain through a mathematic model, the graph, and provides a simple representation of a complex system. As Alzheimer's and Parkinson's disease are associated with synaptic disruptions and changes in the strength of functional connectivity, they can be well described by functional connectivity analysis computed via graph theory. The aim of the present review is to provide an overview of the most recent applications of the graph theory to electrophysiological data in the two by far most frequent neurodegenerative disorders, Alzheimer's and Parkinson's diseases.

19.
Stroke ; 53(5): 1746-1758, 2022 05.
Article in English | MEDLINE | ID: mdl-35291824

ABSTRACT

BACKGROUND: More effective strategies are needed to promote poststroke functional recovery. Here, we evaluated the impact of bihemispheric transcranial direct current stimulation (tDCS) on forelimb motor function recovery and the underlying mechanisms in mice subjected to focal ischemia of the motor cortex. METHODS: Photothrombotic stroke was induced in the forelimb brain motor area, and tDCS was applied once per day for 3 consecutive days, starting 72 hours after stroke. Grid-walking, single pellet reaching, and grip strength tests were conducted to assess motor function. Local field potentials were recorded to evaluate brain connectivity. Western immunoblotting, ELISA, quantitative real-time polymerase chain reaction, and Golgi-Cox staining were used to uncover tDCS-mediated stroke recovery mechanisms. RESULTS: Among our results, tDCS increased the rate of motor recovery, anticipating it at the early subacute stage. In this window, tDCS enhanced BDNF (brain-derived neurotrophic factor) expression and dendritic spine density in the peri-infarct motor cortex, along with increasing functional connectivity between motor and somatosensory cortices. Treatment with the BDNF TrkB (tropomyosin-related tyrosine kinase B) receptor inhibitor, ANA-12, prevented tDCS effects on motor recovery and connectivity as well as the increase of spine density, pERK (phosphorylated extracellular signal-regulated kinase), pCaMKII (phosphorylated calcium/calmodulin-dependent protein kinase II), pMEF (phosphorylated myocyte-enhancer factor), and PSD (postsynaptic density)-95. The tDCS-promoted rescue was paralleled by enhanced plasma BDNF level, suggesting its potential role as circulating prognostic biomarker. CONCLUSIONS: The rate of motor recovery is accelerated by tDCS applied in the subacute phase of stroke. Anticipation of motor recovery via vicariate pathways or neural reserve recruitment would potentially enhance the efficacy of standard treatments, such as physical therapy, which is often delayed to a later stage when plastic responses are progressively lower.


Subject(s)
Motor Cortex , Stroke , Transcranial Direct Current Stimulation , Animals , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Humans , Mice , Neuronal Plasticity , Stroke/therapy , Transcranial Direct Current Stimulation/methods
20.
Handb Clin Neurol ; 184: 221-237, 2022.
Article in English | MEDLINE | ID: mdl-35034737

ABSTRACT

Neuro-plasticity describes the ability of the brain in achieving novel functions, either by transforming its internal connectivity, or by changing the elements of which it is made, meaning that, only those changes, that affect both structural and functional aspects of the system, can be defined as "plastic." The concept of plasticity can be applied to molecular as well as to environmental events that can be recognized as the basic mechanism by which our brain reacts to the internal and external stimuli. When considering brain plasticity within a clinical context-that is the process linked with changes of brain functions following a lesion- the term "reorganization" is somewhat synonymous, referring to the specific types of structural/functional modifications observed as axonal sprouting, long-term synaptic potentiation/inhibition or to the plasticity related genomic responses. Furthermore, brain rewires during maturation, and aging thus maintaining a remarkable learning capacity, allowing it to acquire a wide range of skills, from motor actions to complex abstract reasoning, in a lifelong expression. In this review, the contribution on the "neuroplasticity" topic coming from advanced analysis of EEG rhythms is put forward.


Subject(s)
Brain , Neuronal Plasticity , Electromagnetic Phenomena , Humans , Learning , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...