Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 141(20): 8198-8206, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31051070

ABSTRACT

Fungal highly reducing polyketide synthases (HRPKSs) biosynthesize polyketides using a single set of domains iteratively. Product release is a critical step in HRPKS function to ensure timely termination and enzyme turnover. Nearly all of the HRPKSs characterized to date employ a separate thioesterase (TE) or acyltransferase enzyme for product release. In this study, we characterized two fungal HRPKSs that have fused C-terminal TE domains, a new domain architecture for fungal HRPKSs. We showed that both HRPKS-TEs synthesize aminoacylated polyketides in an ATP-independent fashion. The KU42 TE domain selects cysteine and homocysteine and catalyzes transthioesterification using the side-chain thiol group as the nucleophile. In contrast, the KU43 TE domain selects leucine methyl ester and performs a direct amidation of the polyketide, a reaction typically catalyzed by nonribosomal peptide synthetase (NRPS) domains. The characterization of these HRPKS-TE enzymes showcases the functional diversity of HRPKS enzymes and provides potential TE domains as biocatalytic tools to diversify HRPKS structures.


Subject(s)
Basidiomycota/metabolism , Polyketides/metabolism , Thiolester Hydrolases/metabolism , Aminoacylation , Basidiomycota/enzymology , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Polyketides/chemistry , Protein Domains , Stereoisomerism , Thiolester Hydrolases/chemistry
2.
Sci Adv ; 4(4): eaar5459, 2018 04.
Article in English | MEDLINE | ID: mdl-29651464

ABSTRACT

For decades, fungi have been a source of U.S. Food and Drug Administration-approved natural products such as penicillin, cyclosporine, and the statins. Recent breakthroughs in DNA sequencing suggest that millions of fungal species exist on Earth, with each genome encoding pathways capable of generating as many as dozens of natural products. However, the majority of encoded molecules are difficult or impossible to access because the organisms are uncultivable or the genes are transcriptionally silent. To overcome this bottleneck in natural product discovery, we developed the HEx (Heterologous EXpression) synthetic biology platform for rapid, scalable expression of fungal biosynthetic genes and their encoded metabolites in Saccharomyces cerevisiae. We applied this platform to 41 fungal biosynthetic gene clusters from diverse fungal species from around the world, 22 of which produced detectable compounds. These included novel compounds with unexpected biosynthetic origins, particularly from poorly studied species. This result establishes the HEx platform for rapid discovery of natural products from any fungal species, even those that are uncultivable, and opens the door to discovery of the next generation of natural products.


Subject(s)
Biological Products/metabolism , Fungi/genetics , Fungi/metabolism , Gene Expression , Genetic Engineering , Biosynthetic Pathways , Fermentation , Genetic Engineering/methods , High-Throughput Screening Assays , Promoter Regions, Genetic , Workflow
3.
Mol Syst Biol ; 13(7): 934, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28705884

ABSTRACT

Many cellular functions are mediated by protein-protein interaction networks, which are environment dependent. However, systematic measurement of interactions in diverse environments is required to better understand the relative importance of different mechanisms underlying network dynamics. To investigate environment-dependent protein complex dynamics, we used a DNA-barcode-based multiplexed protein interaction assay in Saccharomyces cerevisiae to measure in vivo abundance of 1,379 binary protein complexes under 14 environments. Many binary complexes (55%) were environment dependent, especially those involving transmembrane transporters. We observed many concerted changes around highly connected proteins, and overall network dynamics suggested that "concerted" protein-centered changes are prevalent. Under a diauxic shift in carbon source from glucose to ethanol, a mass-action-based model using relative mRNA levels explained an estimated 47% of the observed variance in binary complex abundance and predicted the direction of concerted binary complex changes with 88% accuracy. Thus, we provide a resource of yeast protein interaction measurements across diverse environments and illustrate the value of this resource in revealing mechanisms of network dynamics.


Subject(s)
Protein Interaction Maps , Saccharomyces cerevisiae Proteins/metabolism , Computer Simulation , DNA Barcoding, Taxonomic , Gene Expression Profiling , Models, Biological , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Protein Interaction Mapping/methods , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Systems Biology
4.
Cold Spring Harb Protoc ; 2016(9)2016 09 01.
Article in English | MEDLINE | ID: mdl-27587778

ABSTRACT

The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here.


Subject(s)
Antifungal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Gene Deletion , Genes, Fungal , Growth Inhibitors/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Gene Library , Genetic Testing , Saccharomyces cerevisiae/genetics
5.
Cold Spring Harb Protoc ; 2016(9)2016 09 01.
Article in English | MEDLINE | ID: mdl-27587783

ABSTRACT

Chemical-genetic interactions (CGIs) describe a phenomenon where the effects of a chemical compound (i.e., a small molecule) on cell growth are dependent on a particular gene. CGIs can reveal important functional information about genes and can also be powerful indicators of a compound's mechanism of action. Mapping CGIs can lead to the discovery of new chemical probes, which, in contrast to genetic perturbations, operate at the level of the gene product (or pathway) and can be fast-acting, tunable, and reversible. The simple culture conditions required for yeast and its rapid growth, as well as the availability of a complete set of barcoded gene deletion strains, facilitate systematic mapping of CGIs in this organism. This process involves two basic steps: first, screening chemical libraries to identify bioactive compounds affecting growth and, second, measuring the effects of these compounds on genome-wide collections of mutant strains. Here, we introduce protocols for both steps that have great potential for the discovery and development of new small-molecule tools and medicines.


Subject(s)
Antifungal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Small Molecule Libraries/pharmacology , Saccharomyces cerevisiae/genetics
6.
Appl Environ Microbiol ; 80(14): 4153-61, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24795371

ABSTRACT

The vast majority of microscopic life on earth consists of microbes that do not grow in laboratory culture. To profile the microbial diversity in environmental and clinical samples, we have devised and employed molecular probe technology, which detects and identifies bacteria that do and do not grow in culture. The only requirement is a short sequence of contiguous bases (currently 60 bases) unique to the genome of the organism of interest. The procedure is relatively fast, inexpensive, customizable, robust, and culture independent and uses commercially available reagents and instruments. In this communication, we report improving the specificity of the molecular probes substantially and increasing the complexity of the molecular probe set by over an order of magnitude (>1,200 probes) and introduce a new final readout method based upon Illumina sequencing. In addition, we employed molecular probes to identify the bacteria from vaginal swabs and demonstrate how a deliberate selection of molecular probes can identify less abundant bacteria even in the presence of much more abundant species.


Subject(s)
Bacteria/isolation & purification , Molecular Probes/chemistry , Bacteria/classification , Bacteria/genetics , Bacteriological Techniques/methods , DNA, Bacterial/genetics , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotides/chemical synthesis , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Sequence Analysis, DNA
7.
Science ; 344(6180): 208-11, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24723613

ABSTRACT

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Subject(s)
Cells/drug effects , Drug Evaluation, Preclinical/methods , Drug Resistance/genetics , Gene Regulatory Networks , Genome-Wide Association Study/methods , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Haploinsufficiency , Humans , Pharmacogenetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
8.
Proc Natl Acad Sci U S A ; 109(23): 9213-8, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22615397

ABSTRACT

Changes in protein-protein interactions that occur in response to environmental cues are difficult to uncover and have been poorly characterized to date. Here we describe a yeast-based assay that allows many binary protein interactions to be assessed in parallel and under various conditions. This method combines molecular bar-coding and tag array technology with the murine dihydrofolate reductase-based protein-fragment complementation assay. A total of 238 protein-fragment complementation assay strains, each representing a unique binary protein complex, were tagged with molecular barcodes, pooled, and then interrogated against a panel of 80 diverse small molecules. Our method successfully identified specific disruption of the Hom3:Fpr1 interaction by the immunosuppressant FK506, illustrating the assay's capacity to identify chemical inhibitors of protein-protein interactions. Among the additional findings was specific cellular depletion of the Dst1:Rbp9 complex by the anthracycline drug doxorubicin, but not by the related drug idarubicin. The assay also revealed chemical-induced accumulation of several binary multidrug transporter complexes that largely paralleled increases in transcript levels. Further assessment of two such interactions (Tpo1:Pdr5 and Snq2:Pdr5) in the presence of 1,246 unique chemical compounds revealed a positive correlation between drug lipophilicity and the drug response in yeast.


Subject(s)
Protein Interaction Mapping/methods , Protein Interaction Maps/genetics , Small Molecule Libraries/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Animals , Computational Biology , DNA-Binding Proteins , Mice , Microarray Analysis , Real-Time Polymerase Chain Reaction , Receptors, Formyl Peptide/metabolism , Saccharomyces cerevisiae Proteins , Tacrolimus , Yeasts
9.
BMC Microbiol ; 12: 29, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22404909

ABSTRACT

BACKGROUND: Our ultimate goal is to detect the entire human microbiome, in health and in disease, in a single reaction tube, and employing only commercially available reagents. To that end, we adapted molecular inversion probes to detect bacteria using solely a massively multiplex molecular technology. This molecular probe technology does not require growth of the bacteria in culture. Rather, the molecular probe technology requires only a sequence of forty sequential bases unique to the genome of the bacterium of interest. In this communication, we report the first results of employing our molecular probes to detect bacteria in clinical samples. RESULTS: While the assay on Affymetrix GenFlex Tag16K arrays allows the multiplexing of the detection of the bacteria in each clinical sample, one Affymetrix GenFlex Tag16K array must be used for each clinical sample. To multiplex the clinical samples, we introduce a second, independent assay for the molecular probes employing Sequencing by Oligonucleotide Ligation and Detection. By adding one unique oligonucleotide barcode for each clinical sample, we combine the samples after processing, but before sequencing, and sequence them together. CONCLUSIONS: Overall, we have employed 192 molecular probes representing 40 bacteria to detect the bacteria in twenty-one vaginal swabs as assessed by the Affymetrix GenFlex Tag16K assay and fourteen of those by the Sequencing by Oligonucleotide Ligation and Detection assay. The correlations among the assays were excellent.


Subject(s)
Bacteria , Microbiological Techniques/methods , Molecular Probe Techniques , Bacteria/genetics , Bacteria/isolation & purification , Computer Simulation , Female , Humans , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Vagina/microbiology
10.
Appl Environ Microbiol ; 76(12): 3904-10, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20418427

ABSTRACT

We have adapted molecular inversion probe technology to identify microbes in a highly multiplexed procedure. This procedure does not require growth of the microbes. Rather, the technology employs DNA homology twice: once for the molecular probe to hybridize to its homologous DNA and again for the 20-mer oligonucleotide barcode on the molecular probe to hybridize to a commercially available molecular barcode array. As proof of concept, we have designed, tested, and employed 192 molecular probes for 40 microbes. While these particular molecular probes are aimed at our interest in the microbes in the human vagina, this molecular probe method could be employed to identify the microbes in any ecological niche.


Subject(s)
Bacteriological Techniques/methods , Communicable Diseases/diagnosis , Molecular Probe Techniques , Nucleic Acid Hybridization/methods , Polymerase Chain Reaction/methods , Female , Humans , Sensitivity and Specificity , Vagina/microbiology
11.
Nat Chem Biol ; 4(8): 498-506, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18622389

ABSTRACT

Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development. Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants. We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and identified both potential targets and structure-activity relationships.


Subject(s)
Drug Design , Genome, Fungal , Genomics/methods , Organic Chemicals/pharmacology , Genes, Fungal/drug effects , Organic Chemicals/chemical synthesis , Structure-Activity Relationship , Yeasts
12.
Proc Natl Acad Sci U S A ; 104(31): 12825-30, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17652520

ABSTRACT

We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and deadly virulence in mouse models. Here we show that the approximately 12-Mb genome of YJM789 contains approximately 60,000 SNPs and approximately 6,000 indels with respect to the reference S288c genome, leading to protein polymorphisms with a few known cases of phenotypic changes. Several ORFs are found to be unique to YJM789, some of which might have been acquired through horizontal transfer. Localized regions of high polymorphism density are scattered over the genome, in some cases spanning multiple ORFs and in others concentrated within single genes. The sequence of YJM789 contains clues to pathogenicity and spurs the development of more powerful approaches to dissecting the genetic basis of complex hereditary traits.


Subject(s)
Genome, Fungal/genetics , Saccharomyces cerevisiae/genetics , Base Sequence , Chromosome Inversion/genetics , Gene Transfer, Horizontal/genetics , Mitochondria/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Phenotype , Phylogeny , Polymorphism, Genetic/genetics , Translocation, Genetic/genetics
13.
Proc Natl Acad Sci U S A ; 104(5): 1522-7, 2007 Jan 30.
Article in English | MEDLINE | ID: mdl-17244705

ABSTRACT

Knowing gene structure is vital to understanding gene function, and accurate genome annotation is essential for understanding cellular function. To this end, we have developed a genome-wide assay for mapping introns in Saccharomyces cerevisiae. Using high-density tiling arrays, we compared wild-type yeast to a mutant deficient for intron degradation. Our method identified 76% of the known introns, confirmed 18 previously predicted introns, and revealed 9 formerly undiscovered introns. Furthermore, we discovered that all 13 meiosis-specific intronic yeast genes undergo regulated splicing, which provides posttranscriptional regulation of the genes involved in yeast cell differentiation. Moreover, we found that approximately 16% of intronic genes in yeast are incompletely spliced during exponential growth in rich medium, which suggests that meiosis is not the only biological process regulated by splicing. Our tiling-array assay provides a snapshot of the spliced transcriptome in yeast. This robust methodology can be used to explore environmentally distinct splicing responses and should be readily adaptable to the study of other organisms, including humans.


Subject(s)
Gene Expression Regulation, Fungal , Introns , Meiosis , RNA Splicing , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Alternative Splicing , Cell Differentiation , Computational Biology , Culture Media/metabolism , Genes, Fungal , Genome, Fungal , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Saccharomyces cerevisiae Proteins/physiology , Software
14.
Genetics ; 174(1): 511-8, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16816425

ABSTRACT

The purpose of introns in the architecturally simple genome of Saccharomyces cerevisiae is not well understood. To assay the functional relevance of introns, a series of computational analyses and several detailed deletion studies were completed on the intronic genes of S. cerevisiae. Mining existing data from genomewide studies on yeast revealed that intron-containing genes produce more RNA and more protein and are more likely to be haplo-insufficient than nonintronic genes. These observations for all intronic genes held true for distinct subsets of genes including ribosomal, nonribosomal, duplicated, and nonduplicated. Corroborating the result of computational analyses, deletion of introns from three essential genes decreased cellular RNA levels and caused measurable growth defects. These data provide evidence that introns improve transcriptional and translational yield and are required for competitive growth of yeast.


Subject(s)
Fungal Proteins/metabolism , Introns/physiology , RNA, Fungal/metabolism , Yeasts/genetics , Actins/genetics , Gene Deletion , Gene Duplication , Gene Expression , Gene Expression Regulation, Fungal , Genes, Fungal , Genome, Fungal , Microbial Sensitivity Tests , Mutation , Phenotype , Phosphoprotein Phosphatases/genetics , Protein Phosphatase 1 , RNA Splicing/physiology , RNA, Ribosomal/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Yeasts/growth & development
15.
Science ; 307(5713): 1321-4, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15653466

ABSTRACT

Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its approximately 20-megabase genome, which contains approximately 6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.


Subject(s)
Cryptococcus neoformans/genetics , Genome, Fungal , Alternative Splicing , Cell Wall/metabolism , Chromosomes, Fungal/genetics , Computational Biology , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/physiology , DNA Transposable Elements , Fungal Proteins/metabolism , Gene Library , Genes, Fungal , Humans , Introns , Molecular Sequence Data , Phenotype , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Polysaccharides/metabolism , RNA, Antisense , Sequence Analysis, DNA , Transcription, Genetic , Virulence , Virulence Factors/metabolism
16.
Science ; 302(5646): 842-6, 2003 Oct 31.
Article in English | MEDLINE | ID: mdl-14593172

ABSTRACT

Functional analysis of a genome requires accurate gene structure information and a complete gene inventory. A dual experimental strategy was used to verify and correct the initial genome sequence annotation of the reference plant Arabidopsis. Sequencing full-length cDNAs and hybridizations using RNA populations from various tissues to a set of high-density oligonucleotide arrays spanning the entire genome allowed the accurate annotation of thousands of gene structures. We identified 5817 novel transcription units, including a substantial amount of antisense gene transcription, and 40 genes within the genetically defined centromeres. This approach resulted in completion of approximately 30% of the Arabidopsis ORFeome as a resource for global functional experimentation of the plant proteome.


Subject(s)
Arabidopsis/genetics , Genome, Plant , RNA, Messenger/genetics , RNA, Plant/genetics , Transcription, Genetic , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , Computational Biology , DNA, Complementary/genetics , DNA, Intergenic , Expressed Sequence Tags , Gene Expression Profiling , Genes, Plant , Genomics , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Reverse Transcriptase Polymerase Chain Reaction
17.
Nature ; 419(6906): 534-7, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12368869

ABSTRACT

The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people every year. To stimulate basic research on the disease, and to promote the development of effective drugs and vaccines against the parasite, the complete genome of P. falciparum clone 3D7 has been sequenced, using a chromosome-by-chromosome shotgun strategy. Here we report the nucleotide sequence of the third largest of the parasite's 14 chromosomes, chromosome 12, which comprises about 10% of the 23-megabase genome. As the most (A + T)-rich (80.6%) genome sequenced to date, the P. falciparum genome presented severe problems during the assembly of primary sequence reads. We discuss the methodology that yielded a finished and fully contiguous sequence for chromosome 12. The biological implications of the sequence data are more thoroughly discussed in an accompanying Article (ref. 3).


Subject(s)
DNA, Protozoan , Plasmodium falciparum/genetics , Animals , Chromosomes , Chromosomes, Artificial, Yeast , Genome, Protozoan , Humans , Proteome , Protozoan Proteins/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL