Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 13(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38920644

ABSTRACT

Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, ß-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.


Subject(s)
Carcinoma, Hepatocellular , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Proliferating Cell Nuclear Antigen , Pyridones , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Pyridones/pharmacology , Rats , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Hep G2 Cells , Proliferating Cell Nuclear Antigen/metabolism , Male , Rats, Inbred F344 , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Diethylnitrosamine , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/genetics
2.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34768791

ABSTRACT

Targeted therapies for regulating processes such as inflammation, apoptosis, and fibrogenesis might modulate human HCC development. Pirfenidone (PFD) has shown anti-fibrotic and anti-inflammatory functions in both clinical and experimental studies. The aim of this study was to evaluate PPARγ expression and localization in samples of primary human tumors and assess PFD-effect in early phases of hepatocarcinogenic process. Human HCC tissue samples were obtained by surgical resection. Experimental hepatocarcinogenesis was induced in male Fischer-344 rats. TGF-ß1 and α-SMA expression was evaluated as fibrosis markers. NF-kB cascade, TNFα, IL-6, and COX-2 expression and localization were evaluated as inflammation indicators. Caspase-3, p53, and PARP-1 were used as apoptosis markers, PCNA for proliferation. Finally, PPARα and PPARγ expression were evaluated to understand the effect of PFD on the activation of such pathways. PPARγ expression was predominantly localized in cytoplasm in human HCC tissue. PFD was effective to prevent histopathological damage and TGF-ß1 and α-SMA overexpression in the experimental model. Anti-inflammatory effects of PFD correlate with diminished IKK and decrease in both IkB-phosphorylation/NF-kB p65 expression and p65-translocation into the nucleus. Pro-apoptotic PFD-induced effects are related with p53 expression, Caspase-3 p17 activation, and PARP-1-cleavage. In conclusion, PFD acts as a tumor suppressor by preventing fibrosis, reducing inflammation, and promoting apoptosis in MRHM.


Subject(s)
Carcinoma, Hepatocellular/metabolism , PPAR gamma/metabolism , Pyridones/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Carcinogenesis , Carcinoma, Hepatocellular/prevention & control , Fibrosis , Inflammation/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/prevention & control , Male , NF-kappa B/metabolism , NF-kappa B p50 Subunit/metabolism , Phosphorylation/drug effects , Pyridones/metabolism , Rats , Rats, Inbred F344 , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL