Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37944523

ABSTRACT

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Subject(s)
Ferroptosis , Iron Overload , Animals , Mice , Caenorhabditis elegans , Oleic Acid/pharmacology , Peroxisome Proliferator-Activated Receptors , Iron Overload/drug therapy , Iron , Phospholipid Ethers
2.
Redox Biol ; 60: 102631, 2023 04.
Article in English | MEDLINE | ID: mdl-36791646

ABSTRACT

Exercise generates a site-specific increase in Reactive Oxygen Species (ROS) within muscle that promotes changes in gene transcription and mitochondrial biogenesis, required for the beneficial adaptive response. We demonstrate that Peroxiredoxin 2 (Prdx2), an abundant cytoplasmic 2-Cys peroxiredoxin, is required for the adaptive hormesis response to physiological levels of H2O2 in myoblasts and following exercise in C. elegans. A short bolus addition of H2O2 increases mitochondrial capacity and improves myogenesis of cultured myoblasts, this beneficial adaptive response was suppressed in myoblasts with decreased expression of cytoplasmic Prdxs. Moreover, a swimming exercise protocol in C. elegans increased mitochondrial content, fitness, survival and longevity in wild type (N2) worms. In contrast, prdx-2 mutant worms had decreased fitness, disrupted mitochondria, reduced survival and lifespan following exercise. Global proteomics following exercise identified distinct changes in the proteome of N2 and prdx-2 mutants. Furthermore, a redox proteomic approach to quantify reversible oxidation of specific Cysteine residues revealed a more reduced redox state in the non-exercised prdx-2 mutant strain that become oxidized following exercise. In contrast, specific Cys residues from regulatory proteins become more reduced in the N2 strain following exercise, establishing the key regulatory role of PRDX-2 in a redox signalling cascade following endogenous ROS generation. Our results demonstrate that conserved cytoplasmic 2-Cys Peroxiredoxins are required for the beneficial adaptive response to a physiological redox stress.


Subject(s)
Caenorhabditis elegans Proteins , Peroxiredoxins , Animals , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Reactive Oxygen Species/metabolism , Caenorhabditis elegans/metabolism , Hydrogen Peroxide/metabolism , Proteomics , Oxidation-Reduction , Cysteine/metabolism , Caenorhabditis elegans Proteins/metabolism
3.
Adv Exp Med Biol ; 1358: 345-367, 2022.
Article in English | MEDLINE | ID: mdl-35641877

ABSTRACT

Structural and regulatory requirements of mammalian spermatozoa in both development and function make them extremely unique cells. Looking at the complexity of spermatozoon structure and its requirements for both motility and quick breakdown within the post-fertilization environment, as well as its functional needs as an extremely streamlined cell with high energy requirements, demonstrate the high importance of oxidative-reductive processes. The oxidative state of the testis and epididymis during sperm development and maturation highly influences sperm structure, with a high dependence on disulfide bond formation, facilitated by thiol mediated processes. However, once functionally active, sperm transition to a new high-risk functional paradigm requiring low levels of reactive oxygen species (ROS) while also being highly susceptible to oxidative damage due to the high proportion of polyunsaturated fatty acids within the lipid bilayer of the plasmalemma and the lack of cytosolic antioxidant defenses. This chapter highlights how glutathione and thioredoxin systems mediate the oxidative environment of the male reproductive tract and facilitate the successful development, maturation and function of mammalian spermatozoa.


Subject(s)
Sperm Maturation , Spermatozoa , Animals , Fertility , Fertilization , Male , Mammals , Oxidation-Reduction , Sperm Maturation/physiology , Spermatozoa/metabolism
4.
PLoS Genet ; 18(2): e1010069, 2022 02.
Article in English | MEDLINE | ID: mdl-35192599

ABSTRACT

EDEM-1, EDEM-2 and EDEM-3 are key players for the quality control of newly synthesized proteins in the endoplasmic reticulum (ER) by accelerating disposal and degradation of misfolded proteins through ER Associated Degradation (ERAD). Although many previous studies reported the role of individual ERAD components especially in cell-based systems, still little is known about the consequences of ERAD dysfunction under physiological and ER stress conditions in the context of a multicellular organism. Here we report the first individual and combined characterization and functional interplay of EDEM proteins in Caenorhabditis elegans using single, double, and triple mutant combinations. We found that EDEM-2 has a major role in the clearance of misfolded proteins from ER under physiological conditions, whereas EDEM-1 and EDEM-3 roles become prominent under acute ER stress. In contrast to SEL-1 loss, the loss of EDEMs in an intact organism induces only a modest ER stress under physiological conditions. In addition, chronic impairment of EDEM functioning attenuated both XBP-1 activation and up-regulation of the stress chaperone GRP78/BiP, in response to acute ER stress. We also show that pre-conditioning to EDEM loss in acute ER stress restores ER homeostasis and promotes survival by activating ER hormesis. We propose a novel role for EDEM in fine-tuning the ER stress responsiveness that affects ER homeostasis and survival.


Subject(s)
Caenorhabditis elegans , Protein Folding , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Glycoproteins/metabolism , Membrane Proteins/metabolism
5.
EMBO J ; 40(3): e105793, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33314217

ABSTRACT

Mammalian TFEB and TFE3, as well as their ortholog in Caenorhabditis elegans HLH-30, play an important role in mediating cellular response to a variety of stress conditions, including nutrient deprivation, oxidative stress, and pathogen infection. In this study, we identify a novel mechanism of TFEB/HLH-30 regulation through a cysteine-mediated redox switch. Under stress conditions, TFEB-C212 undergoes oxidation, allowing the formation of intermolecular disulfide bonds that result in TFEB oligomerization. TFEB oligomers display increased resistance to mTORC1-mediated inactivation and are more stable under prolonged stress conditions. Mutation of the only cysteine residue present in HLH-30 (C284) significantly reduced its activity, resulting in developmental defects and increased pathogen susceptibility in worms. Therefore, cysteine oxidation represents a new type of TFEB post-translational modification that functions as a molecular switch to link changes in redox balance with expression of TFEB/HLH-30 target genes.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Mutation , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans Proteins/genetics , Cell Line , Cysteine , HeLa Cells , Humans , Mice , Oxidation-Reduction , Protein Multimerization , Protein Processing, Post-Translational , RAW 264.7 Cells
6.
J Vis Exp ; (164)2020 10 08.
Article in English | MEDLINE | ID: mdl-33104066

ABSTRACT

4D microscopy is an invaluable tool for unraveling the embryonic developmental process in different animals. Over the last decades, Caenorhabditis elegans has emerged as one of the best models for studying development. From an optical point of view, its size and transparent body make this nematode an ideal specimen for DIC (Differential Interference Contrast or Nomarski) microscopy. This article illustrates a protocol for growing C. elegans nematodes, preparing and mounting their embryos, performing 4D microscopy and cell lineage tracing. The method is based on multifocal time-lapse records of Nomarski images and analysis with specific software. This technique reveals embryonic developmental dynamics at the cellular level. Any embryonic defect in mutants, such as problems in spindle orientation, cell migration, apoptosis or cell fate specification, can be efficiently detected and scored. Virtually every single cell of the embryo can be followed up to the moment the embryo begins to move. Tracing the complete cell lineage of a C. elegans embryo by 4D DIC microscopy is laborious, but the use of specific software greatly facilitates this task. In addition, this technique is easy to implement in the lab. 4D microscopy is a versatile tool and opens the possibility of performing an unparalleled analysis of embryonic development.


Subject(s)
Caenorhabditis elegans/embryology , Embryonic Development , Microscopy/methods , Animals , Apoptosis , Caenorhabditis elegans/cytology , Caenorhabditis elegans/growth & development , Cell Differentiation , Cell Lineage , Cell Movement , Embryo, Nonmammalian/cytology , Software
7.
Syst Biol Reprod Med ; 66(5): 311-321, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32851881

ABSTRACT

Male germline-specific thioredoxin domain containing 8 (TXNDC8; alias SPTRX3) accumulates indefective human spermatozoa. We assessed the efficiency of two-step semen purification inremoving spermatozoa carrying TXNDC8, and examined the relationship of TXNDC8 with theoutcomes of assisted reproductive therapy (ART), conventional semen parameters, and sperm DNA integrity in sperm chromatin structure assay (SCSA). Semen samples (n = 255) from 91 ART couples were screened in two independent trials, both including a two-step, gradient-and-swim-up separation procedure yielding A-samples (raw semen), B-samples (gradient separated), and C-samples (gradient-and-swim-up). The C-samples were used for intracytoplasmic sperm injection (ICSI) with morphologically selected spermatozoa (IMSSI). Percentage of TXNDC8-positive spermatozoaincreased progressively from A to B/C-samples in both trials. In the first trial (35 couples), the TXNDC8 correlated positively with sperm DNA fragmentation index (%DFI; r = 0.66) measured before separation, and negatively with sperm concentration (r = -0.57) and motility (r = -0.67), also taken before separation. The high DNA stainability index (%HDS) correlated with the percentage of spermatozoa lacking TXNDC8 (r = 0.68). Both SCSA and TXNDC8 parameters showed moderate correlations (r = 0.33-0.66) with blood serum levels of hCG on day 11 (Beta 1) and day13 (Beta 2) after oocyte retrieval. In the second trial (56 couples), fathers of multiplets had a significantly lower percentage of TXNDC8-positive spermatozoa in B-sample (gradient separationonly) compared to men who conceived a singleton pregnancy (p = 0.01) and those who produced no pregnancy (p = 0.02). Those multiplets' fathers also had a significantly higher sperm concentration while their SCSA parameters did not differ from others. It is concluded that theTXNDC8 levels correlate with SCSA and conventional raw semen parameters, and are predictive of pregnancy outcome and multiple births after ART. Two-step purification does not efficiently remove TXNDC8 carrying spermatozoa. ABBREVIATIONS: ART- assisted reproductive therapy; DFI- DNA fragmentation index; FC- flow cytometry (FC); hCG: human chorionic gonadotropin; HDS: high DNA stainability index; HEPES- (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); HTF- human tubal fluid; ICSI- intracytoplasmic sperm injection; IgG- immunoglobulin G; IMSSI- ICSI with morphologically selected spermatozoa; IVF- in vitro fertilization; IU-: intrauterine insemination; NGS- normal goat serum; PBS- phosphate buffered saline; PVP- polyvinylpyrrolidone; SAB- spontaneous abortion; SCSA- sperm chromatin structure assay; SPTRX3- spermatid specific thioredoxin 3; SSS- synthetic serum substitute; TRITC- tetramethyl rhodamine isothiocyanate; TX-100- Triton X-100; TXNDC- thioredoxin domain-containing proteins; TXNDC8- thioredoxin domain containing 8; TUNEL- Terminal deoxynucleotidyl transferase dUTP nick end labeling.


Subject(s)
Chromatin Assembly and Disassembly , DNA Damage , Infertility/metabolism , Reproductive Techniques, Assisted , Spermatozoa/metabolism , Thioredoxins/metabolism , Adult , Female , Humans , Infertility/pathology , Infertility/physiopathology , Live Birth , Male , Pregnancy , Pregnancy Rate , Reproductive Techniques, Assisted/adverse effects , Sperm Count , Sperm Injections, Intracytoplasmic , Sperm Motility , Spermatozoa/pathology , Treatment Outcome
8.
Redox Biol ; 34: 101528, 2020 07.
Article in English | MEDLINE | ID: mdl-32388267

ABSTRACT

Hepatocellular carcinoma (HCC) represents 80% of the primary hepatic neoplasms. It is the sixth most frequent neoplasm, the fourth cause of cancer-related death, and 7% of registered malignancies. Sorafenib is the first line molecular targeted therapy for patients in advanced stage of HCC. The present study shows that Sorafenib exerts free radical scavenging properties associated with the downregulation of nuclear factor E2-related factor 2 (Nrf2)-regulated thioredoxin 1 (Trx1) expression in liver cancer cells. The experimental downregulation and/or overexpression strategies showed that Trx1 induced activation of nitric oxide synthase (NOS) type 3 (NOS3) and S-nitrosation (SNO) of CD95 receptor leading to an increase of caspase-8 activity and cell proliferation, as well as reduction of caspase-3 activity in liver cancer cells. In addition, Sorafenib transiently increased mRNA expression and activity of S-nitrosoglutathione reductase (GSNOR) in HepG2 cells. Different experimental models of hepatocarcinogenesis based on the subcutaneous implantation of HepG2 cells in nude mice, as well as the induction of HCC by diethylnitrosamine (DEN) confirmed the relevance of Trx1 downregulation during the proapoptotic and antiproliferative properties induced by Sorafenib. In conclusion, the induction of apoptosis and antiproliferative properties by Sorafenib were related to Trx1 downregulation that appeared to play a relevant role on SNO of NOS3 and CD95 in HepG2 cells. The transient increase of GSNOR might also participate in the deactivation of CD95-dependent proliferative signaling in liver cancer cells.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice , Mice, Nude , Nitrosation , Phenylurea Compounds , Sorafenib/pharmacology , Thioredoxins/genetics
9.
Biotechniques ; 68(6): 296-299, 2020 06.
Article in English | MEDLINE | ID: mdl-32301330

ABSTRACT

Mutations in the human MYH7 gene, encoding a slow skeletal muscle/ß-cardiac myosin heavy chain, cause different types of myopathies. The nematode model Caenorhabditis elegans has frequently been employed to study the molecular and physiological consequences of MYH7 mutations in muscle function by introducing mutations into the unc-54 gene, the worm MYH7 ortholog. We report here that the C. elegans model is not appropriate for such studies if they involve expression of the UNC-54 protein (wild-type or fused to green fluorescent protein) above endogenous levels.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Cardiac Myosins/genetics , Myosin Heavy Chains/genetics , Myosins/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation/genetics
10.
Free Radic Biol Med ; 152: 797-809, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32017990

ABSTRACT

Adrenoleukodystrophy is a neurometabolic disorder caused by a defective peroxisomal ABCD1 transporter of very long-chain fatty acids (VLCFAs). Its pathogenesis is incompletely understood. Here we characterize a nematode model of X-ALD with loss of the pmp-4 gene, the worm orthologue of ABCD1. These mutants recapitulate the hallmarks of X-ALD: i) VLCFAs accumulation and impaired mitochondrial redox homeostasis and ii) axonal damage coupled to locomotor dysfunction. Furthermore, we identify a novel role for PMP-4 in modulating lipid droplet dynamics. Importantly, we show that the mitochondria targeted antioxidant MitoQ normalizes lipid droplets size, and prevents axonal degeneration and locomotor disability, highlighting its therapeutic potential. Moreover, PMP-4 acting solely in the hypodermis rescues axonal and locomotion abnormalities, suggesting a myelin-like role for the hypodermis in providing essential peroxisomal functions for the nematode nervous system.


Subject(s)
Adrenoleukodystrophy , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/genetics , Animals , Caenorhabditis elegans/genetics , Fatty Acids , Mice , Mice, Knockout , Subcutaneous Tissue
11.
Redox Biol ; 28: 101323, 2020 01.
Article in English | MEDLINE | ID: mdl-31557719

ABSTRACT

Human selenium-binding protein 1 (SELENBP1) was originally identified as a protein binding selenium, most likely as selenite. SELENBP1 is associated with cellular redox and thiol homeostasis in several respects, including its established role as a methanethiol oxidase that is involved in degradation of methanethiol, a methionine catabolite, generating hydrogen sulfide (H2S) and hydrogen peroxide (H2O2). As both H2S and reactive oxygen species (such as H2O2) are major regulators of Caenorhabditis elegans lifespan and stress resistance, we hypothesized that a SELENBP1 ortholog in C. elegans would likely be involved in regulating these aspects. Here we characterize Y37A1B.5, a putative selenium-binding protein 1 ortholog in C. elegans with 52% primary structure identity to human SELENBP1. While conferring resistance to toxic concentrations of selenite, Y37A1B.5 also attenuates resistance to oxidative stress and lowers C. elegans lifespan: knockdown of Y37A1B.5 using RNA interference resulted in an approx. 10% increase of C. elegans lifespan and an enhanced resistance against the redox cycler paraquat, as well as enhanced motility. Analyses of transgenic reporter strains suggest hypodermal expression and cytoplasmic localization of Y37A1B.5, whose expression decreases with worm age. We identify the transcriptional coregulator MDT-15 and transcription factor EGL-27 as regulators of Y37A1B.5 levels and show that the lifespan extending effect elicited by downregulation of Y37A1B.5 is independent of known MDT-15 interacting factors, such as DAF-16 and NHR-49. In summary, Y37A1B.5 is an ortholog of SELENBP1 that shortens C. elegans lifespan and lowers resistance against oxidative stress, while allowing for a better survival under toxic selenite concentrations.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Selenious Acid/adverse effects , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Cytoplasm/metabolism , Drug Resistance , Gene Expression Regulation , Humans , Longevity , Membrane Proteins/chemistry , Oxidative Stress , Paraquat/adverse effects , Selenium-Binding Proteins/chemistry , Selenium-Binding Proteins/genetics , Selenium-Binding Proteins/metabolism , Structural Homology, Protein
12.
Antioxidants (Basel) ; 8(12)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775265

ABSTRACT

Quercetin is one the most abundant flavonoids in the human diet. Although it is well known that quercetin exhibits a range of biological activities, the mechanisms behind these activities remain unresolved. The aim of this work is to progress in the knowledge of the molecular mechanisms involved in the biological effects of quercetin using Caenorhabditis elegans as a model organism. With this aim, the nematode has been used to explore the ability of this flavonoid to modulate the insulin/insulin-like growth factor 1(IGF-1) signaling pathway (IIS) and the expression of some genes related to stress response. Different methodological approaches have been used, i.e., assays in knockout mutant worms, gene expression assessment by RT-qPCR, and C. elegans transgenic strains expressing green fluorescent protein (GFP) reporters. The results showed that the improvement of the oxidative stress resistance of C. elegans induced by quercetin could be explained, at least in part, by the modulation of the insulin signaling pathway, involving genes age-1, akt-1, akt-2, daf-18, sgk-1, daf-2, and skn-1. However, this effect could be independent of the transcription factors DAF-16 and HSF-1 that regulate this pathway. Moreover, quercetin was also able to increase expression of hsp-16.2 in aged worms. This observation could be of particular interest to explain the effects of enhanced lifespan and greater resistance to stress induced by quercetin in C. elegans, since the expression of many heat shock proteins diminishes in aging worms.

13.
PLoS Genet ; 15(9): e1008338, 2019 09.
Article in English | MEDLINE | ID: mdl-31525188

ABSTRACT

Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.


Subject(s)
Organ Specificity/genetics , RNA Transport/physiology , RNA, Messenger/physiology , Active Transport, Cell Nucleus/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Nucleus/genetics , Cytoplasm/metabolism , Nucleocytoplasmic Transport Proteins/genetics , RNA Transport/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
14.
Free Radic Biol Med ; 137: 59-73, 2019 06.
Article in English | MEDLINE | ID: mdl-31018154

ABSTRACT

Multiple thioredoxin isoforms exist in all living cells. To explore the possible functions of mammalian mitochondrial thioredoxin 2 (Trx2), an interactome of mouse Trx2 was initially created using (i) a monothiol mouse Trx2 species for capturing protein partners from different organs and (ii) yeast two hybrid screens on human liver and rat brain cDNA libraries. The resulting interactome consisted of 195 proteins (Trx2 included) plus the mitochondrial 16S RNA. 48 of these proteins were classified as mitochondrial (MitoCarta2.0 human inventory). In a second step, the mouse interactome was combined with the current four-membered mitochondrial sub-network of human Trx2 (BioGRID) to give a 53-membered human Trx2 mitochondrial interactome (52 interactor proteins plus the mitochondrial 16S RNA). Although thioredoxins are thiol-employing disulfide oxidoreductases, approximately half of the detected interactions were not due to covalent disulfide bonds. This finding reinstates the extended role of thioredoxins as moderators of protein function by specific non-covalent, protein-protein interactions. Analysis of the mitochondrial interactome suggested that human Trx2 was involved potentially in mitochondrial integrity, formation of iron sulfur clusters, detoxification of aldehydes, mitoribosome assembly and protein synthesis, protein folding, ADP ribosylation, amino acid and lipid metabolism, glycolysis, the TCA cycle and the electron transport chain. The oxidoreductase functions of Trx2 were verified by its detected interactions with mitochondrial peroxiredoxins and methionine sulfoxide reductase. Parkinson's disease, triosephosphate isomerase deficiency, combined oxidative phosphorylation deficiency, and lactate dehydrogenase b deficiency are some of the diseases where the proposed mitochondrial network of Trx2 may be implicated.


Subject(s)
Mitochondria/metabolism , Parkinson Disease/metabolism , Protein Isoforms/metabolism , RNA, Mitochondrial/genetics , Thioredoxins/metabolism , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Protein Binding , Protein Interaction Maps , Rats , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/genetics
15.
Redox Biol ; 24: 101178, 2019 06.
Article in English | MEDLINE | ID: mdl-30953965

ABSTRACT

Thioredoxins (TRX) are traditionally considered as enzymes catalyzing redox reactions. However, redox-independent functions of thioredoxins have been described in different organisms, although the underlying molecular mechanisms are yet unknown. We report here the characterization of the first generated endogenous redox-inactive thioredoxin in an animal model, the TRX-1 in the nematode Caenorhabditis elegans. We find that TRX-1 dually regulates the formation of an endurance larval stage (dauer) by interacting with the insulin pathway in a redox-independent manner and the cGMP pathway in a redox-dependent manner. Moreover, the requirement of TRX-1 for the extended longevity of worms with compromised insulin signalling or under calorie restriction relies on TRX-1 redox activity. In contrast, the nuclear translocation of the SKN-1 transcription factor and increased LIPS-6 protein levels in the intestine upon trx-1 deficiency are strictly redox-independent. Finally, we identify a novel function of C. elegans TRX-1 in male food-leaving behaviour that is redox-dependent. Taken together, our results position C. elegans as an ideal model to gain mechanistic insight into the redox-independent functions of metazoan thioredoxins, overcoming the limitations imposed by the embryonic lethal phenotypes of thioredoxin mutants in higher organisms.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Oxidation-Reduction , Thioredoxins/metabolism , Amino Acid Substitution , Animals , Biomarkers , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cysteine/genetics , DNA Mutational Analysis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression , Male , Mutation , Protein Transport , Thioredoxins/chemistry , Thioredoxins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Cell Death Differ ; 26(9): 1545-1565, 2019 09.
Article in English | MEDLINE | ID: mdl-30770874

ABSTRACT

In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.


Subject(s)
Autophagy/genetics , Caenorhabditis elegans/genetics , Glutathione Reductase/metabolism , Glutathione/metabolism , Peptides/toxicity , Protein Aggregation, Pathological/metabolism , Proteostasis/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Glutathione/genetics , Glutathione Reductase/genetics , Homeostasis/drug effects , Homeostasis/genetics , Humans , Maleates/pharmacology , Muscle Cells/metabolism , Neurons/metabolism , Oxidation-Reduction/drug effects , Peptides/antagonists & inhibitors , Phenotype , Proteolysis/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
17.
J Mol Neurosci ; 67(2): 312-342, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30604380

ABSTRACT

Sex differences in brain physiology and by inference various pathologies are generally recognized, however frequently ignored in epidemiological and experimental studies, leading to numerous data gaps. As a consequence, the mechanisms underlying sexual dimorphism of neurological diseases remain largely unknown. Several cellular and molecular pathways linked to the etiology and pathogenesis of various brain disorders have been recently described as sex-specific. Here, we review the evidence for sex differences in brain redox homeostasis, which is an important factor in brain physiology and disease. First, we focus on sex-specific differences in the healthy brain regarding popular redox balance markers, including reactive oxygen and nitrogen species, oxidative damage, and antioxidant status. We also review the modulatory effect of steroid sex hormones on these markers. Lastly, we approach the sex-specific changes in brain redox homeostasis in disease and discuss the possibility that differential redox response contributes to the sexual dimorphism of neurological disorders.


Subject(s)
Brain/metabolism , Neurodegenerative Diseases/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Female , Homeostasis , Humans , Male , Mitochondria/metabolism , Neurodegenerative Diseases/etiology , Sex Factors
18.
PLoS One ; 14(1): e0199483, 2019.
Article in English | MEDLINE | ID: mdl-30689636

ABSTRACT

The nematode Caenorhabditis elegans has been used to examine the influence of epicatechin (EC), an abundant flavonoid in the human diet, in some stress biomarkers (ROS production, lipid peroxidation and protein carbonylation). Furthermore, the ability of EC to modulate the expression of some key genes in the insulin/IGF-1 signaling pathway (IIS), involved in longevity and oxidative or heat shock stress response, has also been explored. The final aim was to contribute to the elucidation of the mechanisms involved in the biological effects of flavonoids. The results showed that EC-treated wild-type C. elegans exhibited increased survival and reduced oxidative damage of biomolecules when submitted to thermal stress. EC treatment led to a moderate elevation in ROS levels, which might activate endogenous mechanisms of defense protecting against oxidative insult. The enhanced stress resistance induced by EC was found to be mediated through the IIS pathway, since assays in daf-2, age-1, akt-1, akt-2, sgk-1, daf-16, skn-1 and hsf-1 loss of function mutant strains failed to show any heat-resistant phenotype against thermal stress when treated with EC. Consistently, EC treatment upregulated the expression of some stress resistance associated genes, such as gst-4, hsp-16.2 and hsp-70, which are downstream regulated by the IIS pathway.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Catechin/pharmacology , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Insulin/genetics , Insulin-Like Growth Factor I/genetics , Lipid Peroxidation/drug effects , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/genetics
19.
Neurotox Res ; 35(1): 208-216, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30155682

ABSTRACT

Methylmercury (MeHg), an abundant environmental pollutant, has long been known to adversely affect neurodevelopment in both animals and humans. Several reports from epidemiological studies, as well as experimental data indicate sex-specific susceptibility to this neurotoxicant; however, the molecular bases of this process are still not clear. In the present study, we used Caenorhabditis elegans (C. elegans), to investigate sex differences in response to MeHg toxicity during development. Worms at different developmental stage (L1, L4, and adult) were treated with MeHg for 1 h. Lethality assays revealed that male worms exhibited significantly higher resistance to MeHg than hermaphrodites, when at L4 stage or adults. However, the number of worms with degenerated neurons was unaffected by MeHg, both in males and hermaphrodites. Lower susceptibility of males was not related to changes in mercury (Hg) accumulation, which was analogous for both wild-type (wt) and male-rich him-8 strain. Total glutathione (GSH) levels decreased upon MeHg in him-8, but not in wt. Moreover, the sex-dependent response of the cytoplasmic thioredoxin system was observed-males exhibited significantly higher expression of thioredoxin TRX-1, and thioredoxin reductase TRXR-1 expression was downregulated upon MeHg treatment only in hermaphrodites. These outcomes indicate that the redox status is an important contributor to sex-specific sensitivity to MeHg in C. elegans.


Subject(s)
Methylmercury Compounds/toxicity , Sex Characteristics , Age Factors , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Glutathione/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/metabolism
20.
Neurotoxicology ; 68: 189-202, 2018 09.
Article in English | MEDLINE | ID: mdl-30138651

ABSTRACT

Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Cytoplasm/metabolism , Methylmercury Compounds/toxicity , Thioredoxins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glutathione/metabolism , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...