Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Clin Genet ; 101(5-6): 552-558, 2022 05.
Article in English | MEDLINE | ID: mdl-35132614

ABSTRACT

Variants in aminoacyl-tRNA synthetases (ARSs) genes are associated to a broad spectrum of human inherited diseases. Patients with defective PheRS, encoded by FARSA and FARSB, display brain abnormalities, interstitial lung disease and facial dysmorphism. We investigated four children from two unrelated consanguineous families carrying two missense homozygous variants in FARSA with significantly reduced PheRS-mediated aminoacylation activity. In addition to the core ARS-phenotype, all patients showed an inflammatory profile associated with autoimmunity and interferon score, a clinical feature not ascribed to PheRS-deficient patients to date. JAK inhibition improved lung disease in one patient. Our findings expand the genetic and clinical spectrum of FARSA-related disease.


Subject(s)
Amino Acyl-tRNA Synthetases , Charcot-Marie-Tooth Disease , Lung Diseases, Interstitial , Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , Consanguinity , Humans , Lung Diseases, Interstitial/genetics , Phenotype , Syndrome
2.
Viruses ; 12(10)2020 10 21.
Article in English | MEDLINE | ID: mdl-33096929

ABSTRACT

Replication of human immunodeficiency virus type 1 (HIV-1) requires the packaging of tRNALys,3 from the host cell into the new viral particles. The GagPol viral polyprotein precursor associates with mitochondrial lysyl-tRNA synthetase (mLysRS) in a complex with tRNALys, an essential step to initiate reverse transcription in the virions. The C-terminal integrase moiety of GagPol is essential for its association with mLysRS. We show that integrases from HIV-1 and HIV-2 bind mLysRS with the same efficiency. In this work, we have undertaken to probe the three-dimensional (3D) architecture of the complex of integrase with mLysRS. We first established that the C-terminal domain (CTD) of integrase is the major interacting domain with mLysRS. Using the pBpa-photo crosslinking approach, inter-protein cross-links were observed involving amino acid residues located at the surface of the catalytic domain of mLysRS and of the CTD of integrase. In parallel, using molecular docking simulation, a single structural model of complex was found to outscore other alternative conformations. Consistent with crosslinking experiments, this structural model was further probed experimentally. Five compensatory mutations in the two partners were successfully designed which supports the validity of the model. The complex highlights that binding of integrase could stabilize the tRNALys:mLysRS interaction.


Subject(s)
HIV Integrase/chemistry , Lysine-tRNA Ligase/chemistry , Mitochondria/enzymology , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Domains , Two-Hybrid System Techniques
3.
Hum Mutat ; 40(10): 1826-1840, 2019 10.
Article in English | MEDLINE | ID: mdl-31116475

ABSTRACT

Mutations in genes encoding aminoacyl-tRNA synthetases have been reported in several neurological disorders. KARS is a dual localized lysyl-tRNA synthetase and its cytosolic isoform belongs to the multiple aminoacyl-tRNA synthetase complex (MSC). Biallelic mutations in the KARS gene were described in a wide phenotypic spectrum ranging from nonsyndromic deafness to complex impairments. Here, we report on a patient with severe neurological and neurosensory disease investigated by whole-exome sequencing and found to carry biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one being novel, in the KARS gene. The patient presented with an atypical clinical presentation with an optic neuropathy not previously reported. At the cellular level, we show that cytoplasmic KARS was expressed at a lower level in patient cells and displayed decreased interaction with MSC. In vitro, these two KARS variants have a decreased aminoacylation activity compared with wild-type KARS, the p.Pro228Leu being the most affected. Our data suggest that dysfunction of cytoplasmic KARS resulted in a decreased level of translation of the nuclear-encoded lysine-rich proteins belonging to the respiratory chain complex, thus impairing mitochondria functions.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Lysine-tRNA Ligase/genetics , Mutation , Nervous System Diseases/complications , Nervous System Diseases/genetics , Optic Nerve Diseases/complications , Sensation Disorders/complications , Sensation Disorders/genetics , Alleles , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Fibroblasts/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/metabolism , Magnetic Resonance Imaging , Models, Molecular , Nervous System Diseases/diagnosis , Optic Nerve Diseases/diagnosis , Pedigree , Protein Binding , Protein Conformation , Sensation Disorders/diagnosis , p38 Mitogen-Activated Protein Kinases/metabolism
4.
FEBS J ; 285(14): 2654-2661, 2018 07.
Article in English | MEDLINE | ID: mdl-29775242

ABSTRACT

Biallelic missense mutations in MARS are responsible for rare but severe cases of pulmonary alveolar proteinosis (PAP) prevalent on the island of La Réunion. MARS encodes cytosolic methionyl-tRNA synthetase (MetRS), an essential translation factor. The multisystemic effects observed in patients with this form of PAP are consistent with a loss-of-function defect in an ubiquitously expressed enzyme. The pathophysiological mechanisms involved in MARS-related PAP are currently unknown. In this work, we analyzed the effect of the PAP-related mutations in MARS on the thermal stability and on the catalytic parameters of the MetRS mutants, relative to wild-type. The effect of these mutations on the structural integrity of the enzyme as a member of the cytosolic multisynthetase complex was also investigated. Our results establish that the PAP-related substitutions in MetRS impact the tRNAMet -aminoacylation reaction especially at the level of methionine recognition, and suggest a direct link between the loss of activity of the enzyme and the pathological disorders in PAP.


Subject(s)
Methionine-tRNA Ligase/chemistry , Methionine/chemistry , Mutation , Pulmonary Alveolar Proteinosis/metabolism , RNA, Transfer, Met/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Methionine/metabolism , Methionine-tRNA Ligase/genetics , Methionine-tRNA Ligase/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/pathology , RNA, Transfer, Met/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Transfer RNA Aminoacylation
5.
BMC Biochem ; 19(1): 2, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29562886

ABSTRACT

BACKGROUND: An important step in human immunodeficiency virus type 1 (HIV-1) replication is the packaging of tRNA3Lys from the host cell, which plays the role of primer RNA in the process of initiation of reverse transcription. The viral GagPol polyprotein precursor, and the human mitochondrial lysyl-tRNA synthetase (mLysRS) from the host cell, have been proposed to be involved in the packaging process. More specifically, the catalytic domain of mLysRS is supposed to interact with the transframe (TF or p6*) and integrase (IN) domains of the Pol region of the GagPol polyprotein. RESULTS: In this work, we report a quantitative characterization of the protein:protein interactions between mLysRS and its viral partners, the Pol polyprotein, and the isolated integrase and transframe domains of Pol. A dissociation constant of 1.3 ± 0.2 nM was determined for the Pol:mLysRS interaction, which exemplifies the robustness of this association. The protease and reverse transcriptase domains of GagPol are dispensable in this association, but the TF and IN domains have to be connected by a linker polypeptide to recapitulate a high affinity partner for mLysRS. The binding of the viral proteins to mLysRS does not dramatically enhance the binding affinity of mLysRS for tRNA3Lys. CONCLUSIONS: These data support the conclusion that the complex formed between GagPol, mLysRS and tRNA3Lys, which involves direct interactions between the IN and TF domains of Pol with mLysRS, is more robust than suggested by the previous models supposed to be involved in the packaging of tRNA3Lys into HIV-1 particles.


Subject(s)
HIV-1/enzymology , Lysine-tRNA Ligase/metabolism , Mitochondria/enzymology , RNA, Transfer, Lys/metabolism , pol Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Catalytic Domain , HIV-1/physiology , Humans , Protein Binding , Protein Processing, Post-Translational , Virus Assembly , pol Gene Products, Human Immunodeficiency Virus/genetics
6.
IUBMB Life ; 70(3): 192-196, 2018 03.
Article in English | MEDLINE | ID: mdl-29417736

ABSTRACT

The question of what governs the translation elongation rate in eukaryotes has not yet been completely answered. Earlier, different availability of different tRNAs was considered as a main factor involved, however, recent data revealed that the elongation rate does not always depend on tRNA availability. Here, we offer another, codon-independent approach to explain specific tRNA-dependence of the elongation rate in eukaryotes. We hypothesize that the exit rate of eukaryotic translation elongation factor 1A (eEF1A)*GDP from the 80S ribosome depends on the protein affinity to specific aminoacyl-tRNA remaining on the ribosome after GTP hydrolysis. Subsequently, a slower dissociation of eEF1A*GDP from certain aminoacyl-tRNAs in the ribosome can negatively influence the ribosomal elongation rate in a tRNA-dependent and mRNA-independent way. The specific tRNA-dependent departure rate of eEF1A*GDP from the ribosome is suggested to be a novel factor contributing to the overall translation elongation control in eukaryotic cells. © 2018 IUBMB Life, 70(3):192-196, 2018.


Subject(s)
Peptide Chain Elongation, Translational , Protein Biosynthesis/genetics , RNA, Transfer/genetics , Ribosomes/genetics , Codon , Eukaryotic Cells/metabolism , Guanosine Diphosphate/genetics , Peptide Elongation Factor 1/genetics , RNA, Messenger/genetics
7.
Subcell Biochem ; 83: 505-522, 2017.
Article in English | MEDLINE | ID: mdl-28271488

ABSTRACT

Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/ultrastructure , Animals , Anticodon/genetics , Cryoelectron Microscopy , Scattering, Small Angle , X-Ray Diffraction
8.
FEBS Open Bio ; 6(7): 696-706, 2016 07.
Article in English | MEDLINE | ID: mdl-27398309

ABSTRACT

Human cytoplasmic lysyl-tRNA synthetase (LysRS) is associated within a multi-aminoacyl-tRNA synthetase complex (MSC). Within this complex, the p38 component is the scaffold protein that binds the catalytic domain of LysRS via its N-terminal region. In addition to its translational function when associated to the MSC, LysRS is also recruited in nontranslational roles after dissociation from the MSC. The balance between its MSC-associated and MSC-dissociated states is essential to regulate the functions of LysRS in cellular homeostasis. With the aim of understanding the rules that govern association of LysRS in the MSC, we analyzed the protein interfaces between LysRS and the full-length version of p38, the scaffold protein of the MSC. In a previous study, the cocrystal structure of LysRS with a N-terminal peptide of p38 was reported [Ofir-Birin Y et al. (2013) Mol Cell 49, 30-42]. In order to identify amino acid residues involved in interaction of the two proteins, the non-natural, photo-cross-linkable amino acid p-benzoyl-l-phenylalanine (Bpa) was incorporated at 27 discrete positions within the catalytic domain of LysRS. Among the 27 distinct LysRS mutants, only those with Bpa inserted in place of Lys356 or His364 were cross-linked with p38. Using mass spectrometry, we unambiguously identified the protein interface of the cross-linked complex and showed that Lys356 and His364 of LysRS interact with the peptide from Pro8 to Arg26 in native p38, in agreement with the published cocrystal structure. This interface, which in LysRS is located on the opposite side of the dimer to the site of interaction with its tRNA substrate, defines the core region of the MSC. The residues identified herein in human LysRS are not conserved in yeast LysRS, an enzyme that does not associate within the MSC, and contrast with the residues proposed to be essential for LysRS:p38 association in the earlier work.

9.
Biochim Open ; 2: 52-61, 2016 Jun.
Article in English | MEDLINE | ID: mdl-29632838

ABSTRACT

In human, the cytoplasmic (cLysRS) and mitochondrial (mLysRS) species of lysyl-tRNA synthetase are encoded by a single gene. Following HIV-1 infection, mLysRS is selectively taken up into viral particles along with the three tRNALys isoacceptors. The GagPol polyprotein precursor is involved in this process. With the aim to reconstitute in vitro the HIV-1 tRNA3Lys packaging complex, we first searched for the putative involvement of another viral protein in the selective viral hijacking of mLysRS only. After screening all the viral proteins, we observed that Vpr and Rev have the potential to interact with mLysRS, but that this association does not take place at the level of the assembly of mLysRS into the packaging complex. We also show that tRNA3Lys can form a ternary complex with the two purified proteins mLysRS and the Pol domain of GagPol, which mimicks its packaging complex.

10.
Int J Mol Sci ; 16(3): 6571-94, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25807264

ABSTRACT

Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Archaea/enzymology , Archaea/metabolism , Biological Evolution , Phylogeny
11.
J Biol Chem ; 288(33): 23979-89, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23836901

ABSTRACT

In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Scattering, Small Angle , X-Ray Diffraction , Amino Acyl-tRNA Synthetases/isolation & purification , Amino Acyl-tRNA Synthetases/ultrastructure , Animals , Diffusion , Hydrodynamics , Models, Molecular , Peptides/chemistry , Protein Subunits/chemistry , Protein Subunits/isolation & purification , Rabbits , Reproducibility of Results , Solutions , Ultracentrifugation
12.
Biochemistry ; 51(4): 909-16, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22235746

ABSTRACT

The cytoplasmic and mitochondrial species of human lysyl-tRNA synthetase are encoded by a single gene by means of alternative splicing of the KARS1 gene. The cytosolic enzyme possesses a eukaryote-specific N-terminal polypeptide extension that confers on the native enzyme potent tRNA binding properties required for the vectorial transfer of tRNA from the synthetase to elongation factor EF1A within the eukaryotic translation machinery. The mitochondrial enzyme matures from its precursor upon being targeted to that organelle. To understand how the cytosolic and mitochondrial enzymes are adapted to participate in two distinct translation machineries, of eukaryotic or bacterial origin, we characterized the mitochondrial LysRS species. Here we report that cleavage of the precursor of mitochondrial LysRS leads to a mature enzyme with reduced tRNA binding properties compared to those of the cytoplasmic counterpart. This adaptation mechanism may prevent inhibition of translation through sequestration of lysyl-tRNA on the synthetase in a compartment where the bacterial-like elongation factor EF-Tu could not assist in its dissociation from the synthetase. We also observed that the RxxxKRxxK tRNA-binding motif of mitochondrial LysRS is not functional in the precursor form of that enzyme and becomes operational after cleavage of the mitochondrial targeting sequence. The finding that maturation of the precursor is needed to reveal the potent tRNA binding properties of this enzyme has strong implications for the spatiotemporal regulation of its activities and is consistent with previous studies suggesting that the only LysRS species able to promote packaging of tRNA(Lys) into HIV-1 viral particles is the mature form of the mitochondrial enzyme.


Subject(s)
Lysine-tRNA Ligase/metabolism , Mitochondria/enzymology , Amino Acid Sequence , Aminoacylation , Cytoplasm/enzymology , Enzyme Activation , Enzyme Precursors/chemistry , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Exons , HeLa Cells , Humans , Kinetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Mitochondria/metabolism , Models, Molecular , Molecular Sequence Data , Protein Sorting Signals , Protein Structure, Tertiary , Protein Transport , RNA, Transfer/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
13.
J Mol Biol ; 410(5): 875-86, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21763493

ABSTRACT

Cytosolic and mitochondrial lysyl-tRNA synthetases (LysRS) are encoded by a single gene and can be distinguished only according to their very N-terminal sequences. It was believed that cytosolic LysRS is packaged into HIV-1 virions via its association with Gag. Using monospecific antibodies, it was later shown that only the mitochondrial LysRS is taken up in viral particles along with tRNA(3)(Lys), the primer for reverse transcription of the HIV-1 genome. In this work, we re-analyzed the interaction between LysRS and GagPol to determine whether the particular N-terminal sequence of mitochondrial LysRS triggers a specific recognition with GagPol, or if differential routing of the two LysRS species in vivo could explain specific and exclusive packaging of the mitochondrial species. Here, we show that LysRS associates with the Pol domain of GagPol. More specifically, the transframe (TF or p6) and integrase (IN) domain proteins of Pol interact with the catalytic domain of LysRS. A model of the assembly of the LysRS-tRNA(3)(Lys)-GagPol packaging complex is proposed, which is consistent with the release of its different components after maturation of GagPol in the virions. The cytoplasmic and mitochondrial LysRS species share an identical catalytic domain. Accordingly, we found that both enzymes have the intrinsic capacity to bind to GagPol in vitro. In addition, both enzymes interact with p38 in vitro, the scaffold protein of the cytoplasmic multi-aminoacyl-tRNA synthetase complex, even though only the cytoplasmic species of LysRS is a bona fide component of this complex. These results suggest that the different LysRS species are strictly targeted in vivo, and open new perspectives for the search of a new class of inhibitors of the HIV-1 development cycle that would block the packaging of tRNA(3)(Lys) into viral particles.


Subject(s)
Catalytic Domain , Fusion Proteins, gag-pol/chemistry , Fusion Proteins, gag-pol/metabolism , HIV-1/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/metabolism , Mitochondria/enzymology , Amino Acyl-tRNA Synthetases , Binding, Competitive , Humans , Immunoprecipitation , Models, Biological , Protein Binding , Protein Structure, Tertiary , RNA, Transfer, Lys/metabolism , Two-Hybrid System Techniques
14.
J Biol Chem ; 286(32): 28476-87, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21685384

ABSTRACT

MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Evolution, Molecular , Multienzyme Complexes/metabolism , Amino Acyl-tRNA Synthetases/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Multienzyme Complexes/genetics , Proteomics
15.
Protein Sci ; 19(12): 2475-84, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20954242

ABSTRACT

Methionyl-tRNA synthetase (MetRS) is a multidomain protein that specifically binds tRNAMet and catalyzes the synthesis of methionyl-tRNAMet. The minimal, core enzyme found in Aquifex aeolicus is made of a catalytic domain, which catalyzes the aminoacylation reaction, and an anticodon-binding domain, which promotes tRNA-protein association. In eukaryotes, additional domains are appended in cis or in trans to the core enzyme and increase the stability of the tRNA-protein complexes. Eventually, as observed for MetRS from Homo sapiens, the C-terminal appended domain causes a slow release of aminoacyl-tRNA and establishes a limiting step in the global aminoacylation reaction. Here, we report that MetRS from the nematode Caenorhabditis elegans displays a new type of structural organization. Its very C-terminal appended domain is related to the oligonucleotide binding-fold-based tRNA-binding domain (tRBD) recovered at the C-terminus of MetRS from plant, but, in the nematode enzyme, this domain is separated from the core enzyme by an insertion domain. Gel retardation and tRNA aminoacylation experiments show that MetRS from nematode is functionally related to human MetRS despite the fact that their appended tRBDs have distinct structural folds, and are not orthologs. Thus, functional convergence of human and nematode MetRS is the result of parallel and convergent evolution that might have been triggered by the selective pressure to invent processivity of tRNA handling in translation in higher eukaryotes.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/enzymology , Evolution, Molecular , Methionine-tRNA Ligase/chemistry , Amino Acid Sequence , Animals , Molecular Sequence Data , Protein Structure, Secondary , Sequence Homology, Amino Acid
16.
FEBS Lett ; 584(2): 443-7, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-19914240

ABSTRACT

Several lines of evidence led to the conclusion that mammalian ribosomal protein synthesis is a highly organized biological process in vivo. A wealth of data support the concept according to which tRNA aminoacylation, formation of the ternary complex on EF1A and delivery of aminoacyl-tRNA to the ribosome is a processive mechanism where tRNA is vectorially transferred from one component to another. Polypeptide extensions, referred to as tRBDs (tRNA binding domains), are appended to mammalian and yeast aminoacyl-tRNA synthetases. The involvement of these domains in the capture of deacylated tRNA and in the sequestration of aminoacylated tRNA, suggests that cycling of tRNA in translation is mediated by the processivity of the consecutive steps. The possible origin of the tRBDs is discussed.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Eukaryotic Cells/enzymology , RNA, Transfer/metabolism , Transfer RNA Aminoacylation , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Animals , Humans , Protein Biosynthesis , Protein Structure, Tertiary
17.
Biochemistry ; 48(42): 9959-68, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19775078

ABSTRACT

In humans, nine aminoacyl-tRNA synthetases form a stable multiprotein complex with the three auxiliary proteins p18, p38, and p43. The N-terminal moiety of p43 is involved in its anchoring to the complex, and its C-terminal moiety has a potent tRNA binding capacity. The p43 component of the complex is also the precursor of p43(ARF), an apoptosis-released factor, and of p43(EMAPII), the endothelial-monocyte activating polypeptide II. Here we identified a new translation product of the gene of p43, which contains nine additional N-terminal amino acid residues. This gene product is targeted to the mitochondria and accounts for 2% of p43 expressed in human cells. The cytoplasmic and mitochondrial species of p43 are produced from the same mRNA by a mechanism of leaky scanning of the AUG codon at position -27, which is in an unfavorable sequence context for translation initiation. The finding that a mitochondrial species of p43 exists in human cells further exemplifies the multifaceted implications of p43 and opens new perspectives for the understanding of the role of p43 in the apoptotic cell.


Subject(s)
Codon, Initiator , Cytokines/genetics , Cytoplasm/metabolism , Mitochondria/metabolism , Neoplasm Proteins/genetics , Peptide Chain Initiation, Translational , RNA-Binding Proteins/genetics , Base Sequence , Cytokines/chemistry , Cytokines/metabolism , DNA, Complementary/metabolism , HeLa Cells , Humans , Models, Genetic , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Protein Transport , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism
18.
J Biol Chem ; 284(20): 13746-13754, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19289464

ABSTRACT

The localization in space and in time of proteins within the cytoplasm of eukaryotic cells is a central question of the cellular compartmentalization of metabolic pathways. The assembly of proteins within stable or transient complexes plays an essential role in this process. Here, we examined the subcellular localization of the multi-aminoacyl-tRNA synthetase complex in human cells. The sequestration of its components within the cytoplasm rests on the presence of the eukaryotic-specific polypeptide extensions that characterize the human enzymes, as compared with their prokaryotic counterparts. The cellular mobility of several synthetases, assessed by measuring fluorescence recovery after photobleaching, suggested that they are not freely diffusible within the cytoplasm. Several of these enzymes, isolated by tandem affinity purification, were copurified with ribosomal proteins and actin. The capacity of aminoacyl-tRNA synthetases to interact with polyribosomes and with the actin cytoskeleton impacts their subcellular localization and mobility. Our observations have conceptual implications for understanding how translation machinery is organized in vivo.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Multienzyme Complexes/metabolism , Polyribosomes/metabolism , Protein Biosynthesis/physiology , HeLa Cells , Humans , Protein Transport/physiology
19.
J Biol Chem ; 284(10): 6053-60, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19131329

ABSTRACT

The spatio-temporal organization of proteins within the cytoplasm of eukaryotic cells rests in part on the assembly of stable and transient multiprotein complexes. Here we examined the assembly of the multiaminoacyl-tRNA synthetase complex (MARS) in human cells. This complex contains nine aminoacyl-tRNA synthetases and three auxiliary proteins and is a hallmark of metazoan species. Isolation of the complexes has been performed by tandem affinity purification from human cells in culture. To understand the rules of assembly of this particle, expression of the three nonsynthetase components of MARS, p18, p38, and p43, was blocked by stable small interfering RNA silencing. The lack of these components was not lethal for the cells, but cell growth was slightly reduced. The residual complexes that could form in vivo in the absence of the auxiliary proteins were isolated by tandem affinity purification. From the repertoire of the subcomplexes that could be isolated, a comprehensive map of protein-protein interactions mediating complex assembly is deduced. The data are consistent with a structural role of the three nonsynthetase components of MARS, with p38 connecting two subcomplexes that may form in the absence of p38.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Multiprotein Complexes/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/isolation & purification , HeLa Cells , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/isolation & purification , Protein Structure, Quaternary/physiology , RNA, Small Interfering/genetics
20.
FEBS Lett ; 581(16): 3105-10, 2007 Jun 26.
Article in English | MEDLINE | ID: mdl-17560997

ABSTRACT

Mitochondrial lysyl-tRNA synthetase (LysRS) is thought to be involved in the specific packaging of tRNA(3)(Lys) into HIV-1 viral particles. The HIV-1 auxiliary viral protein Vpr is an apoptogenic protein that affects the integrity of the mitochondrial membrane and has also been reported to interact with LysRS. In the present study, we show that HIV-1 Vpr expressed in E. coli and purified to homogeneity does not interact specifically with LysRS and does not impact its aminoacylation activity. However, we also show that the mitochondrial localization of LysRS in HeLa cells is altered after addition of Vpr in the culture medium. These results suggest that HIV-1 Vpr fulfills an essential role in the process of packaging of mitochondrial LysRS.


Subject(s)
Apoptosis/physiology , Gene Products, vpr/pharmacology , Lysine-tRNA Ligase/metabolism , Mitochondria/metabolism , Apoptosis/drug effects , Gene Products, vpr/metabolism , HeLa Cells , Humans , Mitochondria/drug effects , Mitochondria/enzymology , Models, Biological , Protein Binding , Recombinant Proteins/pharmacology , U937 Cells , Virus Assembly/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...