Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res Bull ; 151: 74-83, 2019 09.
Article in English | MEDLINE | ID: mdl-30593879

ABSTRACT

Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.


Subject(s)
Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate/metabolism , Animals , Brain/metabolism , Brain Injuries/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , MAP Kinase Signaling System , Neuroglia/metabolism , Neurons/metabolism , Neuroprotection/physiology , Neuroprotective Agents/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2X/physiology , Receptors, Purinergic P2X7/physiology , Receptors, Purinergic P2Y/metabolism , Receptors, Purinergic P2Y/physiology , Receptors, Purinergic P2Y1/physiology , Signal Transduction
2.
Front Mol Neurosci ; 10: 448, 2017.
Article in English | MEDLINE | ID: mdl-29375309

ABSTRACT

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play a central role in the intracellular signaling of P2X7 nucleotide receptors in neurons and glial cells. Fine spatio-temporal tuning of mitogen-activated protein (MAP) kinases is essential to regulate their biological activity. MAP kinase phosphatases (MKPs) are dual specificity protein phosphatases (DUSPs) that dephosphorylate phosphothreonine and phosphotyrosine residues in MAP kinases. This study focuses on how DUSP, DUSP6/MKP3, a phosphatase specific for ERK1/2 is regulated by the P2X7 nucleotide receptor in cerebellar granule neurons and astrocytes. Stimulation with the specific P2X7 agonist, BzATP, or epidermal growth factor (EGF) (positive control for ERK activation) regulates the levels of DUSP6 in a time dependent manner. Both agonists promote a decline in DUSP6 protein, reaching minimal levels after 30 min yet recovering to basal levels after 1 h. The initial loss of protein occurs through proteasomal degradation, as confirmed in experiments with the proteasome inhibitor, MG-132. Studies carried out with Actinomycin D demonstrated that the enhanced transcription of the Dusp6 gene is responsible for recovering the DUSP6 protein levels. Interestingly, ERK1/2 proteins are involved in the biphasic regulation of the protein phosphatase, being required for both the degradation and the recovery phase. We show that direct Ser197 phosphorylation of DUSP6 by ERK1/2 proteins could be part of the mechanism regulating their cytosolic levels, at least in glial cells. Thus, the ERK1/2 activated by P2X7 receptors exerts positive feedback on these kinase's own activity, promoting the degradation of one of their major inactivators in the cytosolic compartment, DUSP6, both in granule neurons and astrocytes. This feedback loop seems to function as a common universal mechanism to regulate ERK signaling in neural and non-neural cells.

SELECTION OF CITATIONS
SEARCH DETAIL