Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 24(10): e14063, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37469244

ABSTRACT

To use the open-source Monte Carlo (MC) software calculations for TPS monitor unit verification of VMAT plans, delivered with the Varian TrueBeam linear accelerator, and compare the results with a commercial software product, following the guidelines set in AAPM Task Group 219. The TrueBeam is modeled in EGSnrc using the Varian-provided phase-space files. Thirteen VMAT TrueBeam treatment plans representing various anatomical regions were evaluated, comprising 37 treatment arcs. VMAT plans simulations were performed on a computing cluster, using 107 -109 particle histories per arc. Point dose differences at five reference points per arc were compared between Eclipse, MC, and the commercial software, MUCheck. MC simulation with 5 × 107 histories per arc offered good agreement with Eclipse and a reasonable average calculation time of 9-18 min per full plan. The average absolute difference was 3.0%, with only 22% of all points exceeding the 5% action limit. In contrast, the MUCheck average absolute difference was 8.4%, with 60% of points exceeding the 5% dose difference. Lung plans were particularly problematic for MUCheck, with an average absolute difference of approximately 16%. Our EGSnrc-based MC framework can be used for the MU verification of VMAT plans calculated for the Varian TrueBeam; furthermore, our phase space approach can be adapted to other treatment devices by using appropriate phase space files. The use of 5 × 107 histories consistently satisfied the 5% action limit across all plan types for the majority of points, performing significantly better than a commercial MU verification system, MUCheck. As faster processors and cloud computing facilities become even more widely available, this approach can be readily implemented in clinical settings.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Computer Simulation , Software , Particle Accelerators , Radiotherapy Dosage , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted/methods
2.
J Appl Clin Med Phys ; 20(1): 175-183, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30597730

ABSTRACT

INTRODUCTION: A previous pilot study has demonstrated the feasibility of a novel image-based approach for remote dosimetric auditing of clinical trials. The approach uses a model to convert in-air acquired intensity modulated radiotherapy (IMRT) images to delivered dose inside a virtual phantom. The model was developed using images from an electronic portal imaging device (EPID) on a Varian linear accelerator. It was tuned using beam profiles and field size factors (FSFs) of a series of square fields measured in water tank. This work investigates the need for vendor specific conversion models for image-based auditing. The EPID measured profile and FSF data for Varian (vendor 1) and Elekta (vendor 2) systems are compared along with the performance of the existing Varian model (VM) and a new Elekta model (EM) for a series of audit IMRT fields measured on vendor 2 systems. MATERIALS AND METHODS: The EPID measured beam profile and FSF data were studied for the two vendors to quantify and understand their relevant dosimetric differences. Then, an EM was developed converting EPID to dose in the virtual water phantom using a vendor 2 water tank data and images from corresponding EPID. The VM and EM were compared for predicting vendor 2 measured dose in water tank. Then, the performance of the new EM was compared to the VM for auditing of 54 IMRT fields from four vendor 2 facilities. Statistical significance of using vendor specific models was determined. RESULTS: Observed dosimetry differences between the two vendors suggested developing an EM would be beneficial. The EM performed better than VM for vendor 2 square and IMRT fields. The IMRT audit gamma pass rates were (99.8 ± 0.5)%, (98.6 ± 2.3)% and (97.0 ± 3.0)% at respectively 3%/3 mm, 3%/2 mm and 2%/2 mm with improvements at most fields compared with using the VM. For the pilot audit, the difference between gamma results of the two vendors was reduced when using vendor specific models (VM: P < 0.0001, vendor specific models: P = 0.0025). CONCLUSION: A new model was derived to convert images from vendor 2 EPIDs to dose for remote auditing vendor 2 deliveries. Using vendor specific models is recommended to remotely audit systems from different vendors, however, the improvements found were not major.


Subject(s)
Clinical Audit , Clinical Trials as Topic , Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Electrical Equipment and Supplies , Humans , Image Processing, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods
3.
Radiat Oncol ; 13(1): 178, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30223857

ABSTRACT

BACKGROUND: A novel remote method for external dosimetric TPS-planned auditing of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for clinical trials using electronic portal imaging device (EPID) has been developed. The audit has been applied to multiple centers across Australia and New Zealand. This work aims to assess the audit outcomes and explores the variables that contributed to the audit results. METHODS: Thirty audits were performed of 21 radiotherapy facilities, 17 facilities underwent IMRT audits and 13 underwent VMAT audits. The assessment was based on comparisons between the delivered doses derived from images acquired with EPIDs and planned doses from the local treatment planning systems (TPS). Gamma pass-rate (GPR) and gamma mean value (GMV) were calculated for each IMRT field and VMAT arc (total 268 comparisons). A multiple variable linear model was applied to the GMV results (3%/3 mm criteria) to assess the influence and significance of explanatory variables. The explanatory variables were Linac-TPS combination, TPS grid resolution, IMRT/VMAT delivery, age of EPID, treatment site, record and verification system (R&V) type and dose-rate. Finally, the audit results were compared with other recent audits by calculating the incidence ratio (IR) as a ratio of the observed mean/median GPRs for the remote audit to the other audits. RESULTS: The average (± 1 SD) of the centers' GPRs were: 99.3 ± 1.9%, 98.6 ± 2.7% & 96.2 ± 5.5% at 3%, 3 mm, 3%, 2 mm and 2%, 2 mm criteria respectively. The most determinative variables on the GMVs were Linac-TPS combination, TPS grid resolution and IMRT/VMAT delivery type. The IR values were 1 for seven comparisons, indicating similar GPRs of the remote audit with the reference audits and > 1 for four comparisons, indicating higher GPRs of the remote audit than the reference audits. CONCLUSION: The remote dosimetry audit method for clinical trials demonstrated high GPRs and provided results comparable to established more resource-intensive audit methods. Several factors were found to influence the results including some effect of Linac-TPS combination.


Subject(s)
Cancer Care Facilities , Clinical Audit , Clinical Trials as Topic , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Australia , Humans , Linear Models , Male , New Zealand , Radiometry , Radiotherapy Dosage
4.
Phys Med Biol ; 62(11): 4293-4299, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28248642

ABSTRACT

A virtual EPID standard phantom audit (VESPA) has been implemented for remote auditing in support of facility credentialing for clinical trials using IMRT and VMAT. VESPA is based on published methods and a clinically established IMRT QA procedure, here extended to multi-vendor equipment. Facilities are provided with comprehensive instructions and CT datasets to create treatment plans. They deliver the treatment directly to their EPID without any phantom or couch in the beam. In addition, they deliver a set of simple calibration fields per instructions. Collected EPID images are uploaded electronically. In the analysis, the dose is projected back into a virtual cylindrical phantom. 3D gamma analysis is performed. 2D dose planes and linear dose profiles are provided and can be considered when needed for clarification. In addition, using a virtual flat-phantom, 2D field-by-field or arc-by-arc gamma analyses are performed. Pilot facilities covering a range of planning and delivery systems have performed data acquisition and upload successfully. Advantages of VESPA are (1) fast turnaround mainly driven by the facility's capability of providing the requested EPID images, (2) the possibility for facilities performing the audit in parallel, as there is no need to wait for a phantom, (3) simple and efficient credentialing for international facilities, (4) a large set of data points, and (5) a reduced impact on resources and environment as there is no need to transport heavy phantoms or audit staff. Limitations of the current implementation of VESPA for trials credentialing are that it does not provide absolute dosimetry, therefore a Level I audit is still required, and that it relies on correctly delivered open calibration fields, which are used for system calibration. The implemented EPID based IMRT and VMAT audit system promises to dramatically improve credentialing efficiency for clinical trials and wider applications.


Subject(s)
Credentialing , Electrical Equipment and Supplies , Medical Audit , Phantoms, Imaging , Radiotherapy, Intensity-Modulated/standards , Calibration , Humans , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , User-Computer Interface
5.
J Appl Clin Med Phys ; 17(6): 292-304, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27929502

ABSTRACT

We proposed to perform a basic dosimetry commissioning on a new imager sys-tem, the Varian aS1200 electronic portal imaging device (EPID) and TrueBeam 2.0 linear accelerator for flattened (FF) and flattening filter-free (FFF) beams, then to develop an image-based quality assurance (QA) model for verification of the system delivery accuracy for intensity-modulated radiation therapy (IMRT) treat-ments. For dosimetry testing, linearity of dose response with MU, imager lag, and effectiveness of backscatter shielding were investigated. Then, an image-based model was developed to convert images to planar dose onto a virtual water phantom. The model parameters were identified using energy fluence of the Acuros treatment planning system (TPS) and, reference dose profiles and output factors measured at depths of 5, 10, 15, and 20 cm in water phantom for square fields. To validate the model, its calculated dose was compared to measured dose from MapCHECK 2 diode arrays for 36 IMRT fields at 10 cm depth delivered with 6X, 6XFFF, 10X, and 10XFFF energies. An in-house gamma function was used to compare planar doses pixel-by-pixel. Finally, the method was applied to the same IMRT fields to verify their pretreatment delivery dose compared with Eclipse TPS dose. For the EPID commissioning, dose linearity was within 0.4% above 5 MU and ~ 1% above 2 MU, measured lag was smaller than the previous EPIDs, and profile symmetry was improved. The model was validated with mean gamma pass rates (standard deviation) of 99.0% (0.4%), 99.5% (0.6%), 99.3% (0.4%), and 98.0% (0.8%) at 3%/3 mm for respectively 6X, 6XFFF, 10X, and 10XFFF beams. Using the same comparison criteria, the beam deliveries were verified with mean pass rates of 100% (0.0%), 99.6% (0.3%), 99.9% (0.1%), and 98.7% (1.4%). Improvements were observed in dosimetric response of the aS1200 imager compared to previous EPID models, and the model was successfully developed for the new system and delivery energies of 6 and 10 MV, FF, and FFF modes.


Subject(s)
Filtration/instrumentation , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Electrical Equipment and Supplies , Humans , Models, Theoretical , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...