Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Mol Psychiatry ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844533

ABSTRACT

A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7+/+ and DHCR7+/- genotype. Our results revealed that in vitro exposure to fentanyl disrupted sterol biosynthesis across all four in vitro models. The sterol biosynthesis disruption by fentanyl was complex, and encompassed the majority of post-lanosterol intermediates, including elevated 7-DHC and decreased desmosterol (DES) levels across all investigated models. The overall findings suggested that maternal fentanyl use in the context of an opioid use disorder leads to FFS in the developing fetus through a strong disruption of the whole post-lanosterol pathway that is more complex than a simple DHCR7 inhibition. In follow-up experiments we found that heterozygous DHCR7+/- HDFs were significantly more susceptible to the sterol biosynthesis inhibitory effects of fentanyl than wild-type DHCR7+/+ fibroblasts. These data suggest that DHCR7+/- heterozygosity of mother and/or developing child (and potentially other sterol biosynthesis genes), when combined with maternal fentanyl use disorder, might be a significant contributory factor to the emergence of FFS in the exposed offspring. In a broader context, we believe that evaluation of new and existing medications for their effects on sterol biosynthesis should be an essential consideration during drug safety determinations, especially in pregnancy.

2.
Sci Rep ; 14(1): 7924, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575644

ABSTRACT

Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.


Subject(s)
Dehydrocholesterols , Ferroptosis , Hypoxia-Ischemia, Brain , Animals , Mice , Animals, Newborn , Brain , Hypoxia/complications , Oxygen/therapeutic use , Ischemia/complications , Iron/therapeutic use
3.
Biomolecules ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672427

ABSTRACT

Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.


Subject(s)
Sterols , Humans , Sterols/biosynthesis , Sterols/metabolism , Animals , Cholesterol/biosynthesis , Cholesterol/metabolism , Biosynthetic Pathways/drug effects , Lanosterol/metabolism
4.
Nature ; 626(7998): 401-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297129

ABSTRACT

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Subject(s)
Burkitt Lymphoma , Dehydrocholesterols , Ferroptosis , Neuroblastoma , Animals , Humans , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Survival , Dehydrocholesterols/metabolism , Lipid Peroxidation , Neoplasm Transplantation , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oxidation-Reduction , Phenotype , Reproducibility of Results
5.
Biomolecules ; 13(9)2023 08 28.
Article in English | MEDLINE | ID: mdl-37759721

ABSTRACT

The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both of these compounds are inhibitors of the 7-dehydrocholesterol reductase (DHCR7) enzyme. To evaluate the systemic and nervous system distribution of ARI and TRZ and their effects on cholesterol biosynthesis, adult mice were treated with both ARI and TRZ for 21 days. The parent drugs, their metabolites, and sterols were analyzed in the brain and various organs of mice using LC-MS/MS. The analyses revealed that ARI, TRZ, and their metabolites were readily detectable in the brain and organs, leading to changes in the sterol profile. The levels of medications, their metabolites, and sterols differed across tissues with notable sex differences. Female mice showed higher turnover of ARI and more cholesterol clearance in the brain, with several post-lanosterol intermediates significantly altered. In addition to interfering with sterol biosynthesis, ARI and TRZ exposure led to decreased ionized calcium-binding adaptor molecule 1 (IBA1) and increased DHCR7 protein expression in the cortex. Changes in sterol profile have been also identified in the spleen, liver, and serum, underscoring the systemic effect of ARI and TRZ on sterol biosynthesis. Long-term use of concurrent ARI and TRZ warrants further studies to fully evaluate the lasting consequences of altered sterol biosynthesis on the whole body.


Subject(s)
Phytosterols , Trazodone , Humans , Female , Male , Mice , Animals , Aripiprazole , Trazodone/pharmacology , Chromatography, Liquid , Polypharmacy , Tandem Mass Spectrometry , Cholesterol , Sterols , Brain
6.
Genes Brain Behav ; 22(4): e12853, 2023 08.
Article in English | MEDLINE | ID: mdl-37370259

ABSTRACT

Williams syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1, which encodes a transcription factor suggested to play a role in the behavioral profile of Williams syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A "complete deletion" mouse, heterozygously eliminating the syntenic Williams syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1, which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the complete deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams syndrome critical region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.


Subject(s)
Williams Syndrome , Mice , Animals , Williams Syndrome/genetics , Williams Syndrome/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Disease Models, Animal , Transcription Factors/genetics , Social Behavior , Muscle Proteins/genetics , Muscle Proteins/metabolism
7.
bioRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711815

ABSTRACT

Williams Syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams Syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1 , which encodes a transcription factor suggested to play a role in the behavioral profile of Williams Syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias, and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A 'Complete Deletion' mouse, heterozygously eliminating the syntenic Williams Syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1 , which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the Complete Deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams Syndrome Critical Region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.

8.
ACS Pharmacol Transl Sci ; 5(11): 1086-1096, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36407960

ABSTRACT

Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.

9.
Biomolecules ; 12(10)2022 10 21.
Article in English | MEDLINE | ID: mdl-36291744

ABSTRACT

Polypharmacy is commonly used to treat psychiatric disorders. These combinations often include drugs with sterol biosynthesis inhibiting side effects, including the antipsychotic aripiprazole (ARI), and antidepressant trazodone (TRZ). As the effects of psychotropic medications are poorly understood across the various tissue types to date, we investigated the effects of ARI, TRZ, and ARI + TRZ polypharmacy on the post-lanosterol biosynthesis in three cell lines (Neuro2a, HepG2, and human dermal fibroblasts) and seven peripheral tissues of an adult mouse model. We found that both ARI and TRZ strongly interfere with the function of 7-dehydrocholesterol reductase enzyme (DHCR7) and lead to robust elevation in 7-dehydrocholesterol levels (7-DHC) and reduction in desmosterol (DES) across all cell lines and somatic tissues. ARI + TRZ co-administration resulted in summative or synergistic effects across the utilized in vitro and in vivo models. These findings suggest that at least some of the side effects of ARI and TRZ are not receptor mediated but arise from inhibiting DHCR7 enzyme activity. We propose that interference with sterol biosynthesis, particularly in the case of simultaneous utilization of medications with such side effects, can potentially interfere with functioning or development of multiple organ systems, warranting further investigation.


Subject(s)
Antipsychotic Agents , Trazodone , Adult , Mice , Humans , Animals , Aripiprazole , Desmosterol , Antipsychotic Agents/pharmacology , Lanosterol , Antidepressive Agents
10.
J Neurosci Methods ; 381: 109704, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36070817

ABSTRACT

BACKGROUND: Somatostatin (SST) and cholecystokinin (CCK) are peptide hormones that regulate the endocrine system, cell proliferation and neurotransmission. NEW METHOD: We utilized the novel Easi-CRISPR system to generate two knock-in mouse strains with Cre recombinase in SST- and CCK-expressing cells and validated their utility in the developing and adult brain tissues. RESULTS: The full nomenclature for the newly generated strains are C57BL/6-Sstem1(P2A-iCre-T2A-mCherry)Mirn and C57BL/6-Cckem1(iCre-T2A-mCherry-P2A)Mirn. For the Sst locus, a P2A-iCre-T2A-mCherry cassette was inserted immediately upstream of the stop codon (C terminus fusion). For the Cck locus, iCre-P2A-mCherry-T2A cassette was inserted at the start codon (N terminus fusion). Knock-in mice were generated using the Easi-CRISPR method. Developmental and adult SST and CCK expressions were preserved and showed an appropriate expression pattern in both models, with an active fluorescent tag in both animal lines. COMPARISON WITH EXISTING METHODS: Knock-in mouse models to study cell types that produce these critically important molecules are limited to date. The knock-in mice we generated can be used as reporters to study development, physiology, or pathophysiology of SST and CCK expressing cells - without interference with native expression of SST and CCK. In addition, they can be used as Cre driver models to conditionally delete floxed genes in SST and CCK expressing cells across various tissues. CONCLUSIONS: These two mouse models serve as valuable tools for in vitro and in vivo research studies related to SST and CCK biology across the lifespan and across different tissue types.


Subject(s)
Cholecystokinin , Somatostatin , Animals , Cholecystokinin/genetics , Codon, Initiator , Codon, Terminator , Mice , Mice, Inbred C57BL , Mice, Transgenic , Somatostatin/genetics
11.
Biomolecules ; 12(9)2022 08 31.
Article in English | MEDLINE | ID: mdl-36139049

ABSTRACT

De novo sterol synthesis is a critical homeostatic mechanism in the brain that begins during early embryonic development and continues throughout life. Multiple medications have sterol-biosynthesis-inhibiting side effects, with potentially detrimental effects on brain health. Using LC-MS/MS, we investigated the effects of six commonly used beta-blockers on brain sterol biosynthesis in vitro using cell lines. Two beta-blockers, metoprolol (MTP) and nebivolol, showed extreme elevations of the highly oxidizable cholesterol precursor 7-dehydrocholesterol (7-DHC) in vitro across multiple cell lines. We followed up on the MTP findings using a maternal exposure model in mice. We found that 7-DHC was significantly elevated in all maternal brain regions analyzed as well as in the heart, liver and brain of the maternally exposed offspring. Since DHCR7-inhibiting/7-DHC elevating compounds can be considered teratogens, these findings suggest that MTP utilization during pregnancy might be detrimental for the development of offspring, and alternative beta-blockers should be considered.


Subject(s)
Metoprolol , Oxidoreductases Acting on CH-CH Group Donors , Animals , Brain/metabolism , Cholesterol/metabolism , Chromatography, Liquid , Female , Metoprolol/metabolism , Metoprolol/pharmacology , Mice , Nebivolol/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pregnancy , Tandem Mass Spectrometry , Teratogens
12.
J Lipid Res ; 63(8): 100249, 2022 08.
Article in English | MEDLINE | ID: mdl-35839864

ABSTRACT

Polypharmacy, or the simultaneous use of multiple drugs to treat a single patient, is a common practice in psychiatry. Unfortunately, data on the health effects of commonly used combinations of medications are very limited. In this study, we therefore investigated the effects and interactions between two commonly prescribed psychotropic medications with sterol inhibiting side effects, trazodone (TRZ), an antidepressant, and aripiprazole (ARI), an antipsychotic. In vitro cell culture experiments revealed that both medications alone disrupted neuronal and astroglial sterol biosynthesis in dose-dependent manners. Furthermore, when ARI and TRZ were combined, exposure resulted in an additive 7-dehydrocholesterol (7-DHC) increase, as well as desmosterol (DES) and cholesterol decreases in both cell types. In adult mice, at baseline, we found that the three investigated sterols showed significant differences in distribution across the eight assessed brain regions. Furthermore, experimental mice treated with ARI or TRZ, or a combination of both medications for 8 days, showed strong sterol disruption across all brain regions. We show ARI or TRZ alone elevated 7-DHC and decreased DES levels in all brain regions, but with regional differences. However, the combined utilization of these two medications for 8 days did not lead to additive changes in sterol disturbances. Based on the complex roles of 7-DHC derived oxysterols, we conclude that individual and potentially simultaneous use of medications with sterol biosynthesis-inhibiting properties might have undesired side effects on the adult brain, with as yet unknown long-term consequences on mental or physical health.


Subject(s)
Antipsychotic Agents , Oxidoreductases Acting on CH-CH Group Donors , Trazodone , Animals , Antidepressive Agents , Aripiprazole , Brain , Mice , Sterols
13.
Front Genet ; 13: 841043, 2022.
Article in English | MEDLINE | ID: mdl-35251138

ABSTRACT

Background: MicroRNAs (miRNAs) may be promising therapeutic targets for neonatal hypoxic-ischemic brain injury (HIBI) but targeting miRNA-based therapy will require more precise understanding of endogenous brain miRNA expression. Methods: Postnatal day 9 mouse pups underwent HIBI by unilateral carotid ligation + hypoxia or sham surgery. Next-generation miRNA sequencing and mRNA Neuroinflammation panels were performed on ipsilateral cortex, striatum/thalamus, and cerebellum of each group at 30 min after injury. Targeted canonical pathways were predicted by KEGG analysis. Results: Sixty-one unique miRNAs showed differential expression (DE) in at least one region; nine in more than one region, including miR-410-5p, -1264-3p, 1298-5p, -5,126, and -34b-3p. Forty-four mRNAs showed DE in at least one region; 16 in more than one region. MiRNAs showing DE primarily targeted metabolic pathways, while mRNAs targeted inflammatory and cell death pathways. Minimal miRNA-mRNA interactions were seen at 30 min after HIBI. Conclusion: This study identified miRNAs that deserve future study to assess their potential as therapeutic targets in neonatal HIBI. Additionally, the differences in miRNA expression between regions suggest that future studies assessing brain miRNA expression to guide therapy development should consider evaluating individual brain regions rather than whole brain to ensure the sensitivity needed for the development of targeted therapies.

14.
Metabolites ; 12(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35050168

ABSTRACT

Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC. We utilized preclinical models and clinical specimens of PC patients and cell lines and utilized mass spectrometry-based sterol analysis. Further, we also performed in silico analysis to corroborate the significance of de novo cholesterol synthesis pathway in PC. Our results demonstrated alteration in free sterol levels, including free cholesterol, across in vitro, in vivo, and clinical specimens of PC. Especially, our sterol analyses established consistent alterations in free cholesterol across the different PC models. Overall, this study demonstrates the significance and consistency in deviation of cholesterol synthesis pathway in PC while showing the aberrations in sterol metabolite intermediates and the related genes using preclinical models, in silico platforms, and the clinical specimens.

15.
Mol Psychiatry ; 27(1): 490-501, 2022 01.
Article in English | MEDLINE | ID: mdl-33820938

ABSTRACT

Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Animals , Aripiprazole/metabolism , Brain/metabolism , Cholesterol , Female , Humans , Mice , Neurons/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Pregnancy
16.
Pediatr Res ; 91(1): 92-100, 2022 01.
Article in English | MEDLINE | ID: mdl-34465878

ABSTRACT

BACKGROUND: Neonatal hypoxic-ischemic brain injury (HIBI) results in significant morbidity and mortality despite current standard therapies. MicroRNAs (miRNAs) are a promising therapeutic target; however, there is a paucity of data on endogenous miRNA expression of the brain after HIBI during the primary therapeutic window (6-72 h after injury). METHODS: Postnatal day 9 mouse pups underwent unilateral carotid ligation+hypoxia (HIBI), sham surgery+hypoxia, or sham surgery+normoxia (controls). miRNA sequencing was performed on the ipsilateral brain of each of the three groups plus the contralateral HIBI brain at 24 and 72 h after injury. Findings were validated in eight key miRNAs by quantitative polymerase chain reaction. RESULTS: Hypoxia resulted in significant differential expression of 38 miRNAs at both time points. Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI at 24 and 72 h, with 3 of the 4 demonstrating multiphasic expression (different direction of differential expression at 24 versus 72 h). CONCLUSIONS: Our global assessment of subacute changes in brain miRNA expression after hypoxia or HIBI will advance research into targeted miRNA-based interventions. It will be important to consider the multiphasic miRNA expression patterns after HIBI to identify optimal timing for individual interventions. IMPACT: This study is the first to comprehensively define endogenous brain microRNA expression changes outside of the first hours after neonatal hypoxic-ischemic brain injury (HIBI). Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI and therefore deserve further investigation as possible therapeutic targets. The expression profiles described will support the design of future studies attempting to develop miRNA-based interventions for infants with HIBI. At 24 h after injury, contralateral HIBI miRNA expression patterns were more similar to ipsilateral HIBI than to controls, suggesting that the contralateral brain is not an appropriate "internal control" for miRNA studies in this model.


Subject(s)
Animals, Newborn , Brain/metabolism , Hypoxia-Ischemia, Brain/genetics , MicroRNAs/metabolism , Animals , Disease Models, Animal , Mice , Sequence Analysis, RNA/methods
17.
Biomolecules ; 11(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34439893

ABSTRACT

Smith-Lemli-Opitz syndrome (SLOS) is a severe monogenic disorder resulting in low cholesterol and high 7-dehydrocholesterol (7-DHC) levels. 7-DHC-derived oxysterols likely contribute to disease pathophysiology, and thus antioxidant treatment might be beneficial because of high oxidative stress. In a three-year prospective study, we investigated the effects of vitamin E supplementation in six SLOS patients already receiving dietary cholesterol treatment. Plasma vitamin A and E concentrations were determined by the high-performance liquid chromatography (HPLC) method. At baseline, plasma 7-DHC, 8-dehydrocholesterol (8-DHC) and cholesterol levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The clinical effect of the supplementation was assessed by performing structured parental interviews. At baseline, patients were characterized by low or low-normal plasma vitamin E concentrations (7.19-15.68 µmol/L), while vitamin A concentrations were found to be normal or high (1.26-2.68 µmol/L). Vitamin E supplementation resulted in correction or significant elevation of plasma vitamin E concentration in all patients. We observed reduced aggression, self-injury, irritability, hyperactivity, attention deficit, repetitive behavior, sleep disturbance, skin photosensitivity and/or eczema in 3/6 patients, with notable individual variability. Clinical response to therapy was associated with a low baseline 7-DHC + 8-DHC/cholesterol ratio (0.2-0.4). We suggest that determination of vitamin E status is important in SLOS patients. Supplementation of vitamin E should be considered and might be beneficial.


Subject(s)
Dietary Supplements , Smith-Lemli-Opitz Syndrome/blood , Smith-Lemli-Opitz Syndrome/therapy , Vitamin E/therapeutic use , Adolescent , Alleles , Antioxidants/metabolism , Behavior , Child , Child, Preschool , Cholesterol, Dietary/metabolism , Chromatography, High Pressure Liquid , Chromatography, Liquid , Dehydrocholesterols/blood , Female , Humans , Lipids/chemistry , Male , Oxidative Stress , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxysterols/metabolism , Prospective Studies , Sterols/chemistry , Tandem Mass Spectrometry , Vitamin A/metabolism , Vitamin E/metabolism , Young Adult
18.
ACS Pharmacol Transl Sci ; 4(2): 848-857, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33860207

ABSTRACT

Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.

19.
ACS Omega ; 6(8): 5490-5498, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33681590

ABSTRACT

The last step of cholesterol biosynthesis is the conversion of 7-dehydrocholesterol (7-DHC) into cholesterol, a reaction catalyzed by dehydrocholesterol reductase 7 (DHCR7). Investigation of the effect of Dhcr7 single-allele mutations on the metabolism of aripiprazole (ARI) and cariprazine (CAR) in maternally exposed transgenic pups revealed that ARI, CAR, and their active metabolites were decreased in the liver and brain of Dhcr7 +/- . This difference in the drug and metabolite levels resulted in an increased turnover of ARI and CAR in tissues from Dhcr7 +/- animals, indicating an enhanced metabolism, which was at least partially due to increased levels of Cyp2d6 in the liver of Dhcr7 +/- mice. Finally, experiments with both WT and DHCR7 +/- human fibroblasts revealed lower drug levels in DHCR7 +/- heterozygous cells. Our findings have potential clinical implications, as DHCR7 heterozygosity is present in 1-3% in the human population, and these individuals might have reduced therapeutic levels of Cyp2d6-metabolized medications and are putatively more susceptible to unwanted side effects.

20.
Brain Res ; 1759: 147370, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33600830

ABSTRACT

Genes and environment interact during intrauterine life, and potentially alter the developmental trajectory of the brain. This can result in life-long consequences on brain function. We have previously developed two transgenic mouse lines that suppress Gad1 expression in parvalbumin (PVALB) and neuropeptide Y (NPY) expressing interneuron populations using a bacterial artificial chromosome (BAC)-driven miRNA-based silencing technology. We were interested to assess if maternal immune activation (MIA), genetic interneuronal inhibition, and the combination of these two factors disrupt and result in long-term changes in neuroinflammatory gene expression, sterol biosynthesis, and acylcarnitine levels in the brain of maternally exposed offspring. Pregnant female WT mice were given a single intraperitoneal injection of saline or polyinosinic-polycytidilic acid [poly(I:C)] at E12.5. Brains of offspring were analyzed at postnatal day 90. We identified complex and persistent neuroinflammatory gene expression changes in the hippocampi of MIA-exposed offspring, as well in the hippocampi of Npy/Gad1 and Pvalb/Gad1 mice. In addition, both MIA and genetic inhibition altered the post-lanosterol sterol biosynthesis in the neocortex and disrupted the typical acylcarnitine profile. In conclusion, our findings suggest that both MIA and inhibition of interneuronal function have long-term consequences on critical homeostatic mechanisms of the brain, including immune function, sterol levels, and energy metabolism.


Subject(s)
Inflammation Mediators/immunology , Interneurons/immunology , Neuroimmunomodulation/physiology , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/immunology , Animals , Female , Glutamate Decarboxylase/deficiency , Glutamate Decarboxylase/genetics , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/metabolism , Inflammation Mediators/metabolism , Interferon Inducers/toxicity , Interneurons/drug effects , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neocortex/drug effects , Neocortex/immunology , Neocortex/metabolism , Neuroimmunomodulation/drug effects , Poly I-C/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...