Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 11(8): 1452-1463, 2019.
Article in English | MEDLINE | ID: mdl-31570042

ABSTRACT

Protein primary structure is a potential critical quality attribute for biotherapeutics. Identifying and characterizing any sequence variants present is essential for product development. A sequence variant ~11 kDa larger than the expected IgG mass was observed by size-exclusion chromatography and two-dimensional liquid chromatography coupled with online mass spectrometry. Further characterization indicated that the 11 kDa was added to the heavy chain (HC) Fc domain. Despite the relatively large mass addition, only one unknown peptide was detected by peptide mapping. To decipher the sequence, the transcriptome of the manufacturing cell line was characterized by Illumina RNA-seq. Transcriptome reconstruction detected an aberrant fusion transcript, where the light chain (LC) constant domain sequence was fused to the 3' end of the HC transcript. Translation of this fusion transcript generated an extended peptide sequence at the HC C-terminus corresponding to the observed 11 kDa mass addition. Nanopore-based genome sequencing showed multiple copies of the plasmid had integrated in tandem with one copy missing the 5' end of the plasmid, deleting the LC variable domain. The fusion transcript was due to read-through of the HC terminator sequence into the adjacent partial LC gene and an unexpected splicing event between a cryptic splice-donor site at the 3' end of the HC and the splice acceptor site at the 5' end of the LC constant domain. Our study demonstrates that combining protein physicochemical characterization with genomic and transcriptomic analysis of the manufacturing cell line greatly improves the identification of sequence variants and understanding of the underlying molecular mechanisms.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Immunoglobulin Heavy Chains , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , CHO Cells , Chromatography, Liquid , Cricetulus , High-Throughput Nucleotide Sequencing , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mice , Protein Domains , Tandem Mass Spectrometry
2.
Biotechnol Prog ; 35(5): e2865, 2019 09.
Article in English | MEDLINE | ID: mdl-31180183

ABSTRACT

Glycation, the nonenzymatic reaction between the reducing sugar glucose and the primary amine residues on amino acid side chains, commonly occurs in the cell culture supernatant during production of therapeutic monoclonal antibodies (mAbs). While glycation has the potential to impact efficacy and pharmacokinetic properties for mAbs, the most common undesirable impact of glycation is on the distribution of charged species, often a release specification for commercial processes. Existing empirical approaches are usually insufficient to rationalize the effects of cell line and process changes on glycation. To address this gap, we developed a kinetic model for estimating mAb glycation levels during the cell culture process. The rate constant for glycation, including temperature and pH dependence, was estimated by fitting the kinetic model to time-course glycation data from bioreactors operated at different process settings that yielded a wide range of glycation values. The parameter values were further validated by independently estimating glycation rate constants using cell-free incubation studies at various temperatures. The model was applied to another mAb, by re-estimating the activation energy to account for effect of a glycation "hotspot". The model was further utilized to study the role of temperature shift as an approach to reduce glycation levels in the manufacturing process for mAb2. While a downshift in temperature resulted in lowering of glycation levels for mAb2, the model helped elucidate that this effect was caused due to contribution from changes in glucose consumption, mAb secretion and temperature, instead of a direct impact of temperature alone on the kinetic rate of glycation.


Subject(s)
Antibodies, Monoclonal/metabolism , Biological Therapy , Models, Biological , Animals , Antibodies, Monoclonal/chemistry , CHO Cells , Cells, Cultured , Cricetulus , Glycosylation , Kinetics
3.
Biotechnol Prog ; 34(6): 1460-1471, 2018 11.
Article in English | MEDLINE | ID: mdl-30298994

ABSTRACT

Biopharmaceutical protein manufacturing requires the highest producing cell lines to satisfy current multiple grams per liter requirements. Screening more clones increases the probability of identifying the high producers within the pool of available transfectant candidate cell lines. For the predominant industry mammalian host cell line, Chinese hamster ovary (CHO), traditional static-batch culture screening does not correlate with the suspension fed-batch culture used in manufacturing, and thus has little predictive utility. Small scale fed-batch screens in suspension culture correlate better with bioreactor processes but a limited number of clones can be screened manually. Scaled-down systems, such as shaken deep well plates, combined with automated liquid handling, offer a way for a limited number of scientists to screen many clones. A statistical analysis determined that 384 is the optimal number of clones to screen, with a 99% probability that six clones in the 95th percentile for productivity are included in the screen. To screen 384 clones efficiently by the predictive method of suspension fed-batch, the authors developed a shaken deep-well plate culturing platform, with an automated liquid handling system integrating cell counting and protein titering instruments. Critical factors allowing deep-well suspension culture to correlate with shake flask culture were agitation speed and culture volume. Using our automated system, one scientist can screen five times more clones than by manual fed-batch shake-flask or shaken culture tube screens and can identify cell lines for some therapeutic protein projects with production levels greater than 6 g/L. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1460-1471, 2018.


Subject(s)
Antibodies/metabolism , Batch Cell Culture Techniques/methods , Animals , Bioreactors , CHO Cells , Cricetinae , Cricetulus
4.
Biotechnol Prog ; 34(3): 593-601, 2018 05.
Article in English | MEDLINE | ID: mdl-28556621

ABSTRACT

The manufacturing process for biotherapeutics is closely regulated by the Food and Drug Administration (FDA), European Medicines Agency (EMA) and other regulatory agencies worldwide. To ensure consistency of the product of a manufacturing cell line, International Committee on Harmonization guidelines (Q5D, 1997) state that the cell substrate should be derived from a single cell progenitor, i.e., clonal.Cell lines in suspension culture may naturally revert to cell adhesion in the form of doublets, triplets and higher order structures of clustered cells. We can show evidence of a single colony from limiting dilution cloning or in semi-solid media, but we cannot determine the number of cells from which the colony originated. To address this, we have used the ViCELL® XR (Beckman Coulter, High Wycombe, UK) cell viability analyzer to determine the proportion of clusters of two or more cells in a sample of the cell suspension immediately prior to cloning. Here, we show data to define the accuracy of the ViCELL for characterizing a cell suspension and summarize the statistical model combining two or more rounds of cloning to derive the probability of clonality. The resulting statistical model is applied to cloning in semi-solid medium, but could equally be applied to a limiting dilution cloning process. We also describe approaches to reduce cell clusters to generate a cell line with a high probability of clonality from a CHO host lineage. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:593-601, 2018.


Subject(s)
Cell Culture Techniques , Clone Cells/cytology , Animals , CHO Cells , Cell Survival , Cricetulus
5.
J Immunol Methods ; 451: 100-110, 2017 12.
Article in English | MEDLINE | ID: mdl-28890364

ABSTRACT

Screening and characterization of cell lines for stable production are critical tasks in identifying suitable recombinant cell lines for the manufacture of protein therapeutics. To aid this essential function we have developed a methodology for the selection of antibody expressing cells using fluorescence based ClonePix FL colony isolation and flow cytometry analysis following intracellular staining for immunoglobulin G (IgG). Our data show that characterization of cells by flow cytometry early in the clone selection process enables the identification of cell lines with the potential for high productivity and helps to eliminate unstable cell lines. We further demonstrate a correlation between specific productivity (qP) and intracellular heavy chain (HC) content with final productivity. The unique combination of screening using ClonePix FL and the flow cytometry approaches facilitated more efficient isolation of clonal cell lines with high productivity within a 15week timeline and which can be applied across NS0 and CHO host platforms. Furthermore, in this study we describe the critical parameters for the ClonePix FL colony based selection and the associated calculations to provide an assessment of the probability of monoclonality of the resulting cell lines.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Cell Separation/methods , Flow Cytometry/methods , High-Throughput Screening Assays , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin M/biosynthesis , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Formation , CHO Cells , Cricetulus , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Transfection , Workflow
6.
Biotechnol Prog ; 31(5): 1172-8, 2015.
Article in English | MEDLINE | ID: mdl-26195345

ABSTRACT

Regulatory authorities require that cell lines used in commercial production of recombinant proteins must be derived from a single cell progenitor or clone. The limiting dilution method of cell cloning required multiple rounds of low-density cell plating and microscopic observation of a single cell in order to provide evidence of monoclonality. Other cloning methods rely on calculating statistical probability of monoclonality rather than visual microscopic observation of cells. We have combined the single cell deposition capability of the Becton Dickinson Influx™ cell sorter with the microscopic imaging capability of the SynenTec Cellavista to create a system for producing clonal production cell lines. The efficiency of single cell deposition by the Influx™ was determined to be 98% using fluorescently labeled cells. The centrifugal force required to settle the deposited cells to the bottom of the microplate well was established to be 1,126g providing a 98.1% probability that all cells will be in the focal plane of the Cellavista imaging system. The probability that a single cell was deposited by the cell sorter combined with the probability of every cell settling into the focal plane of the imager yield a combined >99% probability of documented monoclonality.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Cell Separation , Image Processing, Computer-Assisted/methods , Recombinant Proteins/biosynthesis , Animals , CHO Cells , Cell Line , Clone Cells , Cricetinae , Cricetulus , Flow Cytometry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...