Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Oncol ; 13: 1158176, 2023.
Article in English | MEDLINE | ID: mdl-37182169

ABSTRACT

Introduction: Long non-coding ribonucleic acids (lncRNAs) are involved in the cellular damage response following exposure to ionizing radiation as applied in radiotherapy. However, the role of lncRNAs in radiation response concerning intrinsic susceptibility to late effects of radiation exposure has not been examined in general or in long-term survivors of childhood cancer with and without potentially radiotherapy-related second primary cancers, in particular. Methods: Primary skin fibroblasts (n=52 each) of long-term childhood cancer survivors with a first primary cancer only (N1), at least one second primary neoplasm (N2+), as well as tumor-free controls (N0) from the KiKme case-control study were matched by sex, age, and additionally by year of diagnosis and entity of the first primary cancer. Fibroblasts were exposed to 0.05 and 2 Gray (Gy) X-rays. Differentially expressed lncRNAs were identified with and without interaction terms for donor group and dose. Weighted co-expression networks of lncRNA and mRNA were constructed using WGCNA. Resulting gene sets (modules) were correlated to the radiation doses and analyzed for biological function. Results: After irradiation with 0.05Gy, few lncRNAs were differentially expressed (N0: AC004801.4; N1: PCCA-DT, AF129075.3, LINC00691, AL158206.1; N2+: LINC02315). In reaction to 2 Gy, the number of differentially expressed lncRNAs was higher (N0: 152, N1: 169, N2+: 146). After 2 Gy, AL109976.1 and AL158206.1 were prominently upregulated in all donor groups. The co-expression analysis identified two modules containing lncRNAs that were associated with 2 Gy (module1: 102 mRNAs and 4 lncRNAs: AL158206.1, AL109976.1, AC092171.5, TYMSOS, associated with p53-mediated reaction to DNA damage; module2: 390 mRNAs, 7 lncRNAs: AC004943.2, AC012073.1, AC026401.3, AC092718.4, MIR31HG, STXBP5-AS1, TMPO-AS1, associated with cell cycle regulation). Discussion: For the first time, we identified the lncRNAs AL158206.1 and AL109976.1 as involved in the radiation response in primary fibroblasts by differential expression analysis. The co-expression analysis revealed a role of these lncRNAs in the DNA damage response and cell cycle regulation post-IR. These transcripts may be targets in cancer therapy against radiosensitivity, as well as provide grounds for the identification of at-risk patients for immediate adverse reactions in healthy tissues. With this work we deliver a broad basis and new leads for the examination of lncRNAs in the radiation response.

2.
Mol Med ; 29(1): 41, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997855

ABSTRACT

BACKGROUND: Differential expression analysis is usually adjusted for variation. However, most studies that examined the expression variability (EV) have used computations affected by low expression levels and did not examine healthy tissue. This study aims to calculate and characterize an unbiased EV in primary fibroblasts of childhood cancer survivors and cancer-free controls (N0) in response to ionizing radiation. METHODS: Human skin fibroblasts of 52 donors with a first primary neoplasm in childhood (N1), 52 donors with at least one second primary neoplasm (N2 +), as well as 52 N0 were obtained from the KiKme case-control study and exposed to a high (2 Gray) and a low dose (0.05 Gray) of X-rays and sham- irradiation (0 Gray). Genes were then classified as hypo-, non-, or hyper-variable per donor group and radiation treatment, and then examined for over-represented functional signatures. RESULTS: We found 22 genes with considerable EV differences between donor groups, of which 11 genes were associated with response to ionizing radiation, stress, and DNA repair. The largest number of genes exclusive to one donor group and variability classification combination were all detected in N0: hypo-variable genes after 0 Gray (n = 49), 0.05 Gray (n = 41), and 2 Gray (n = 38), as well as hyper-variable genes after any dose (n = 43). While after 2 Gray positive regulation of cell cycle was hypo-variable in N0, (regulation of) fibroblast proliferation was over-represented in hyper-variable genes of N1 and N2+. In N2+, 30 genes were uniquely classified as hyper-variable after the low dose and were associated with the ERK1/ERK2 cascade. For N1, no exclusive gene sets with functions related to the radiation response were detected in our data. CONCLUSION: N2+ showed high degrees of variability in pathways for the cell fate decision after genotoxic insults that may lead to the transfer and multiplication of DNA-damage via proliferation, where apoptosis and removal of the damaged genome would have been appropriate. Such a deficiency could potentially lead to a higher vulnerability towards side effects of exposure to high doses of ionizing radiation, but following low-dose applications employed in diagnostics, as well.


Subject(s)
Cancer Survivors , Neoplasms , Humans , Child , Gene Expression Profiling , Neoplasms/genetics , Neoplasms/radiotherapy , Case-Control Studies , Radiation, Ionizing , Gene Expression , Dose-Response Relationship, Radiation
3.
DNA Repair (Amst) ; 122: 103435, 2023 02.
Article in English | MEDLINE | ID: mdl-36549044

ABSTRACT

New development and optimization of oncologic strategies are steadily increasing the number of long-term cancer survivors being at risk of developing second primary neoplasms (SPNs) as a late consequence of genotoxic cancer therapies with the highest risk among former childhood cancer patients. Since risk factors and predictive biomarkers for therapy-associated SPN remain unknown, we examined the sensitivity to mild replication stress as a driver of genomic instability and carcinogenesis in fibroblasts from 23 long-term survivors of a pediatric first primary neoplasm (FPN), 22 patients with the same FPN and a subsequent SPN, and 22 controls with no neoplasm (NN) using the cytokinesis-block micronucleus (CBMN) assay. Mild replication stress was induced with the DNA-polymerase inhibitor aphidicolin (APH). Fibroblasts from patients with the DNA repair deficiency syndromes Bloom, Seckel, and Fanconi anemia served as positive controls and for validation of the CBMN assay supplemented by analysis of chromosomal aberrations, DNA repair foci (γH2AX/53BP1), and cell cycle regulation. APH treatment resulted in G2/M arrest and underestimation of cytogenetic damage beyond G2, which could be overcome by inhibition of Chk1. Basal micronuclei were significantly increased in DNA repair deficiency syndromes but comparable between NN, FPN, and SPN donors. After APH-induced replication stress, the average yield of micronuclei was significantly elevated in SPN donors compared to FPN (p = 0.013) as well as NN (p = 0.03) donors but substantially lower than for DNA repair deficiency syndromes. Our findings suggest that mild impairment of the response to replication stress induced by genotoxic impacts of DNA-damaging cancer therapies promotes genomic instability in a subset of long-term cancer survivors and may drive the development of an SPN. Our study provides a basis for detailed mechanistic studies as well as predictive bioassays for clinical surveillance, to identify cancer patients at high risk for SPNs at first diagnosis.


Subject(s)
Cancer Survivors , Neoplasms, Second Primary , Humans , Child , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/metabolism , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Chromosomal Instability , Genomic Instability , Micronucleus Tests/methods , DNA Damage , DNA/metabolism , Fibroblasts/metabolism
4.
Mol Med ; 28(1): 105, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068491

ABSTRACT

BACKGROUND: The etiology and most risk factors for a sporadic first primary neoplasm in childhood or subsequent second primary neoplasms are still unknown. One established causal factor for therapy-associated second primary neoplasms is the exposure to ionizing radiation during radiation therapy as a mainstay of cancer treatment. Second primary neoplasms occur in 8% of all cancer survivors within 30 years after the first diagnosis in Germany, but the underlying factors for intrinsic susceptibilities have not yet been clarified. Thus, the purpose of this nested case-control study was the investigation and comparison of gene expression and affected pathways in primary fibroblasts of childhood cancer survivors with a first primary neoplasm only or with at least one subsequent second primary neoplasm, and controls without neoplasms after exposure to a low and a high dose of ionizing radiation. METHODS: Primary fibroblasts were obtained from skin biopsies from 52 adult donors with a first primary neoplasm in childhood (N1), 52 with at least one additional primary neoplasm (N2+), as well as 52 without cancer (N0) from the KiKme study. Cultured fibroblasts were exposed to a high [2 Gray (Gy)] and a low dose (0.05 Gy) of X-rays. Messenger ribonucleic acid was extracted 4 h after exposure and Illumina-sequenced. Differentially expressed genes (DEGs) were computed using limma for R, selected at a false discovery rate level of 0.05, and further analyzed for pathway enrichment (right-tailed Fisher's Exact Test) and (in-) activation (z ≥|2|) using Ingenuity Pathway Analysis. RESULTS: After 0.05 Gy, least DEGs were found in N0 (n = 236), compared to N1 (n = 653) and N2+ (n = 694). The top DEGs with regard to the adjusted p-value were upregulated in fibroblasts across all donor groups (SESN1, MDM2, CDKN1A, TIGAR, BTG2, BLOC1S2, PPM1D, PHLDB3, FBXO22, AEN, TRIAP1, and POLH). Here, we observed activation of p53 Signaling in N0 and to a lesser extent in N1, but not in N2+. Only in N0, DNA (excision-) repair (involved genes: CDKN1A, PPM1D, and DDB2) was predicted to be a downstream function, while molecular networks in N2+ were associated with cancer, as well as injury and abnormalities (among others, downregulation of MSH6, CCNE2, and CHUK). After 2 Gy, the number of DEGs was similar in fibroblasts of all donor groups and genes with the highest absolute log2 fold-change were upregulated throughout (CDKN1A, TIGAR, HSPA4L, MDM2, BLOC1SD2, PPM1D, SESN1, BTG2, FBXO22, PCNA, and TRIAP1). Here, the p53 Signaling-Pathway was activated in fibroblasts of all donor groups. The Mitotic Roles of Polo Like Kinase-Pathway was inactivated in N1 and N2+. Molecular Mechanisms of Cancer were affected in fibroblasts of all donor groups. P53 was predicted to be an upstream regulator in fibroblasts of all donor groups and E2F1 in N1 and N2+. Results of the downstream analysis were senescence in N0 and N2+, transformation of cells in N0, and no significant effects in N1. Seven genes were differentially expressed in reaction to 2 Gy dependent on the donor group (LINC00601, COBLL1, SESN2, BIN3, TNFRSF10A, EEF1AKNMT, and BTG2). CONCLUSION: Our results show dose-dependent differences in the radiation response between N1/N2+ and N0. While mechanisms against genotoxic stress were activated to the same extent after a high dose in all groups, the radiation response was impaired after a low dose in N1/N2+, suggesting an increased risk for adverse effects including carcinogenesis, particularly in N2+.


Subject(s)
Cancer Survivors , Immediate-Early Proteins , Neoplasms, Second Primary , Neoplasms , Adult , Case-Control Studies , Child , F-Box Proteins , Fibroblasts/radiation effects , Humans , Intracellular Signaling Peptides and Proteins , Neoplasms, Second Primary/genetics , Nuclear Proteins , Receptors, Cytoplasmic and Nuclear , Sestrins , Tumor Suppressor Protein p53 , Tumor Suppressor Proteins
5.
EXCLI J ; 21: 117-143, 2022.
Article in English | MEDLINE | ID: mdl-35221838

ABSTRACT

Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.

6.
JMIR Res Protoc ; 10(11): e32395, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34762066

ABSTRACT

BACKGROUND: Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. OBJECTIVE: Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. METHODS: We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). RESULTS: Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). CONCLUSIONS: This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/32395.

8.
Mol Med ; 26(1): 85, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32907548

ABSTRACT

BACKGROUND: Exposure to ionizing radiation induces complex stress responses in cells, which can lead to adverse health effects such as cancer. Although a variety of studies investigated gene expression and affected pathways in human fibroblasts after exposure to ionizing radiation, the understanding of underlying mechanisms and biological effects is still incomplete due to different experimental settings and small sample sizes. Therefore, this study aims to identify the time point with the highest number of differentially expressed genes and corresponding pathways in primary human fibroblasts after irradiation at two preselected time points. METHODS: Fibroblasts from skin biopsies of 15 cell donors were exposed to a high (2Gy) and a low (0.05Gy) dose of X-rays. RNA was extracted and sequenced 2 h and 4 h after exposure. Differentially expressed genes with an adjusted p-value < 0.05 were flagged and used for pathway analyses including prediction of upstream and downstream effects. Principal component analyses were used to examine the effect of two different sequencing runs on quality metrics and variation in expression and alignment and for explorative analysis of the radiation dose and time point of analysis. RESULTS: More genes were differentially expressed 4 h after exposure to low and high doses of radiation than after 2 h. In experiments with high dose irradiation and RNA sequencing after 4 h, inactivation of the FAT10 cancer signaling pathway and activation of gluconeogenesis I, glycolysis I, and prostanoid biosynthesis was observed taking p-value (< 0.05) and (in) activating z-score (≥2.00 or ≤ - 2.00) into account. Two hours after high dose irradiation, inactivation of small cell lung cancer signaling was observed. For low dose irradiation experiments, we did not detect any significant (p < 0.05 and z-score ≥ 2.00 or ≤ - 2.00) activated or inactivated pathways for both time points. CONCLUSIONS: Compared to 2 h after irradiation, a higher number of differentially expressed genes were found 4 h after exposure to low and high dose ionizing radiation. Differences in gene expression were related to signal transduction pathways of the DNA damage response after 2 h and to metabolic pathways, that might implicate cellular senescence, after 4 h. The time point 4 h will be used to conduct further irradiation experiments in a larger sample.


Subject(s)
Fibroblasts/metabolism , Fibroblasts/radiation effects , Gene Expression Regulation/radiation effects , Radiation, Ionizing , Signal Transduction/radiation effects , Case-Control Studies , Cells, Cultured , Computational Biology/methods , Dose-Response Relationship, Radiation , Gene Expression Profiling , Humans , Time Factors
9.
Front Oncol ; 10: 1338, 2020.
Article in English | MEDLINE | ID: mdl-32850427

ABSTRACT

The purpose of the present study was to investigate whether former childhood cancer patients who developed a subsequent secondary primary neoplasm (SPN) are characterized by elevated spontaneous chromosomal instability or cellular and chromosomal radiation sensitivity as surrogate markers of compromised DNA repair compared to childhood cancer patients with a first primary neoplasm (FPN) only or tumor-free controls. Primary skin fibroblasts were obtained in a nested case-control study including 23 patients with a pediatric FPN, 22 matched patients with a pediatric FPN and an SPN, and 22 matched tumor-free donors. Clonogenic cell survival and cytogenetic aberrations in Giemsa-stained first metaphases were assessed after X-irradiation in G1 or on prematurely condensed chromosomes of cells irradiated and analyzed in G2. Fluorescence in situ hybridization was applied to investigate spontaneous transmissible aberrations in selected donors. No significant difference in clonogenic survival or the average yield of spontaneous or radiation-induced aberrations was found between the study populations. However, two donors with an SPN showed striking spontaneous chromosomal instability occurring as high rates of numerical and structural aberrations or non-clonal and clonal translocations. No correlation was found between radiation sensitivity and a susceptibility to a pediatric FPN or a treatment-associated SPN. Together, the results of this unique case-control study show genomic stability and normal radiation sensitivity in normal somatic cells of donors with an early and high intrinsic or therapy-associated tumor risk. These findings provide valuable information for future studies on the etiology of sporadic childhood cancer and therapy-related SPN as well as for the establishment of predictive biomarkers based on altered DNA repair processes.

10.
Int J Radiat Oncol Biol Phys ; 108(3): 770-778, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32473181

ABSTRACT

BACKGROUND: Radon and its progenies contribute significantly to the natural background radiation and cause several thousands of lung cancer cases per year worldwide. Moreover, patients with chronic inflammatory joint diseases are treated in radon galleries. Due to the complex nature of radon exposure, the doses associated with radon exposures are difficult to assess. Hence, there is a clear need to directly measure dose depositions from radon exposures to provide reliable risk estimates for radiation protection guidelines. OBJECTIVES: We aimed to assess tissue-specific radiation doses associated with radon activity concentrations, that deposit similar dose levels as the annual natural radon exposure or radon gallery visits. METHODS: We exposed mice to defined radon concentrations, quantified the number of 53BP1 foci as a measure of induced DNA damage, and compared it with the number of foci induced by known doses of reference-type radiations. An image-based analysis of the 3-dimensional foci pattern provided information about the radiation type inflicting the DNA damage. RESULTS: A 1-hour exposure to 440 kBq/m3 radon-induced DNA damage corresponding to a dose of ∼10 mGy in the lung and ∼3.3 mGy in the kidney, heart, and liver. A 1-hour exposure to 44 kBq/m3 provided values consistent with a linear relationship between dose and radon concentration. Two-thirds of the dose in the lung was caused by α-particles. The dose in the kidney, heart, and liver and one-third of the dose in the lung likely resulted from ß- and γ-rays. DISCUSSION: We found that radon exposures mainly lead to α-particle-induced DNA damage in the lung, consistent with the lung cancer risk obtained in epidemiologic studies. Our presented biodosimetric approach can be used to benchmark risk model calculations for radiation protection guidelines and can help to understand the therapeutic success of radon gallery treatments.


Subject(s)
DNA Damage , Lung Neoplasms/etiology , Neoplasms, Radiation-Induced/etiology , Radiation Dosage , Radiation Exposure/analysis , Radon/adverse effects , Alpha Particles/adverse effects , Animals , Beta Particles/adverse effects , Dose-Response Relationship, Radiation , Gamma Rays/adverse effects , Heart/radiation effects , Histones/analysis , Kidney/radiation effects , Liver/radiation effects , Lung/radiation effects , Mice , Mice, Inbred C57BL , Radiation Exposure/adverse effects , Time Factors , Tumor Suppressor p53-Binding Protein 1/analysis
11.
Sci Rep ; 8(1): 17282, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470760

ABSTRACT

Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Fibroblasts/physiology , Histones/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Algorithms , Automation , Cell Cycle/radiation effects , Cells, Cultured , DNA-Binding Proteins , Fibroblasts/radiation effects , Histones/genetics , Humans , Image Processing, Computer-Assisted , Radiation, Ionizing , Software , Tumor Suppressor p53-Binding Protein 1/genetics
12.
Proc Natl Acad Sci U S A ; 112(40): 12396-401, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26392532

ABSTRACT

Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles.


Subject(s)
Alpha Particles , DNA Damage , DNA/metabolism , Retina/radiation effects , Animals , DNA/chemistry , DNA/genetics , Dose-Response Relationship, Radiation , Histones/metabolism , Mice, Inbred C57BL , Retina/cytology , Retina/metabolism , Tissue Culture Techniques , X-Rays
13.
Radiother Oncol ; 101(1): 51-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21852011

ABSTRACT

BACKGROUND AND PURPOSE: Gliomas display prime examples of ionizing radiation (IR) resistant tumors. The IAP Survivin is reported to be critically involved in radiation resistance by anti-apoptotic and by caspase-independent mechanisms. The present study aimed to elucidate an interrelationship between Survivin's cellular localization and DNA damage repair in glioma cells. MATERIAL AND METHODS: Cellular distribution and nuclear complex formation were assayed by immunoblotting, immunofluorescence staining and co-immunoprecipitation of Survivin bound proteins in LN229 glioblastoma cells. Apoptosis induction, survival and DNA repair following IR were assayed by means of caspase3/7 activity, clonogenic assay, γ-H2AX/53BP1 foci formation, single cell gel electrophoresis assay, and DNA-PKcs kinase assay in the presence of Survivin siRNA or over expression of Survivin-GFP. RESULTS: Following irradiation, we observed a nuclear accumulation and a direct interrelationship between Survivin, MDC1, γ-H2AX, 53BP1 and DNA-PKcs, which was confirmed by immunofluorescence co-localization. Survivin downregulation by siRNA resulted in an increased apoptotic fraction, decreased clonogenic survival and increased DNA-damage, as demonstrated by higher amount of DNA breaks and an increased amount of γ-H2AX/53BP1 foci post irradiation. Furthermore, we detected in Survivin-depleted LN229 cells a hampered S2056 (auto)phosphorylation and a significantly decreased DNA-PKcs kinase activity. CONCLUSION: Nuclear accumulation of Survivin and interaction with components of the DNA-double-strand break (DSB) repair machinery indicates Survivin to regulate DSB damage repair that leads to a significant improvement of survival of LN229 glioblastoma cells.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair/genetics , Glioblastoma/genetics , Glioblastoma/radiotherapy , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Radiation Tolerance/genetics , Apoptosis/genetics , Apoptosis/radiation effects , Caspases/genetics , Caspases/metabolism , Cell Survival , Comet Assay , DNA Damage/genetics , DNA-Activated Protein Kinase , Gene Expression Regulation, Neoplastic , Humans , Immunoprecipitation , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/radiation effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Radiation Dosage , Radiation, Ionizing , Survivin , Tumor Cells, Cultured/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...