Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Radiology ; 312(1): e232085, 2024 07.
Article in English | MEDLINE | ID: mdl-39041937

ABSTRACT

Deep learning (DL) is currently the standard artificial intelligence tool for computer-based image analysis in radiology. Traditionally, DL models have been trained with strongly supervised learning methods. These methods depend on reference standard labels, typically applied manually by experts. In contrast, weakly supervised learning is more scalable. Weak supervision comprises situations in which only a portion of the data are labeled (incomplete supervision), labels refer to a whole region or case as opposed to a precisely delineated image region (inexact supervision), or labels contain errors (inaccurate supervision). In many applications, weak labels are sufficient to train useful models. Thus, weakly supervised learning can unlock a large amount of otherwise unusable data for training DL models. One example of this is using large language models to automatically extract weak labels from free-text radiology reports. Here, we outline the key concepts in weakly supervised learning and provide an overview of applications in radiologic image analysis. With more fundamental and clinical translational work, weakly supervised learning could facilitate the uptake of DL in radiology and research workflows by enabling large-scale image analysis and advancing the development of new DL-based biomarkers.


Subject(s)
Deep Learning , Radiology , Humans , Radiology/education , Supervised Machine Learning , Image Interpretation, Computer-Assisted/methods
2.
Eur Radiol Exp ; 8(1): 10, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326501

ABSTRACT

BACKGROUND: Pretraining labeled datasets, like ImageNet, have become a technical standard in advanced medical image analysis. However, the emergence of self-supervised learning (SSL), which leverages unlabeled data to learn robust features, presents an opportunity to bypass the intensive labeling process. In this study, we explored if SSL for pretraining on non-medical images can be applied to chest radiographs and how it compares to supervised pretraining on non-medical images and on medical images. METHODS: We utilized a vision transformer and initialized its weights based on the following: (i) SSL pretraining on non-medical images (DINOv2), (ii) supervised learning (SL) pretraining on non-medical images (ImageNet dataset), and (iii) SL pretraining on chest radiographs from the MIMIC-CXR database, the largest labeled public dataset of chest radiographs to date. We tested our approach on over 800,000 chest radiographs from 6 large global datasets, diagnosing more than 20 different imaging findings. Performance was quantified using the area under the receiver operating characteristic curve and evaluated for statistical significance using bootstrapping. RESULTS: SSL pretraining on non-medical images not only outperformed ImageNet-based pretraining (p < 0.001 for all datasets) but, in certain cases, also exceeded SL on the MIMIC-CXR dataset. Our findings suggest that selecting the right pretraining strategy, especially with SSL, can be pivotal for improving diagnostic accuracy of artificial intelligence in medical imaging. CONCLUSIONS: By demonstrating the promise of SSL in chest radiograph analysis, we underline a transformative shift towards more efficient and accurate AI models in medical imaging. RELEVANCE STATEMENT: Self-supervised learning highlights a paradigm shift towards the enhancement of AI-driven accuracy and efficiency in medical imaging. Given its promise, the broader application of self-supervised learning in medical imaging calls for deeper exploration, particularly in contexts where comprehensive annotated datasets are limited.


Subject(s)
Artificial Intelligence , Deep Learning , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL