Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L666-L676, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36852930

ABSTRACT

Respiratory viruses, such as influenza, decrease airway cilia function and expression, which leads to reduced mucociliary clearance and inhibited overall immune defense. Ubiquitination is a posttranslational modification using E3 ligases, which plays a role in the assembly and disassembly of cilia. We examined the role of membrane-associated RING-CH (MARCH) family of E3 ligases during influenza infection and determined that MARCH10, specifically expressed in ciliated epithelial cells, is significantly decreased during influenza infection in mice, human lung epithelial cells, and human lung tissue. Cellular depletion of MARCH10 in differentiated human bronchial epithelial cells (HBECs) using CRISPR/Cas9 showed a decrease in ciliary beat frequency. Furthermore, MARCH10 cellular knockdown in combination with influenza infection selectively decreased immunoreactive levels of the ciliary component, dynein axonemal intermediate chain 1. Cellular overexpression of MARCH10 significantly decreased influenza hemagglutinin protein levels in the differentiated HBECs and knockdown of MARCH10 increased IL-1ß cytokine expression, whereas overexpression had the reciprocal effect. These findings suggest that MARCH10 may have a protective role in airway pulmonary host defense and innate immunity during influenza infection.


Subject(s)
Influenza, Human , Orthomyxoviridae , Mice , Humans , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology , Influenza, Human/metabolism , Ubiquitin/metabolism , Ubiquitin/pharmacology , Lung , Cilia/metabolism
2.
NPJ Vaccines ; 7(1): 32, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236861

ABSTRACT

Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.

SELECTION OF CITATIONS
SEARCH DETAIL
...