Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 11426, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32651413

ABSTRACT

Doped antiferromagnets host a vast array of physical properties and learning how to control them is one of the biggest challenges of condensed matter physics. [Formula: see text] (LSNO) is a classic example of such a material. At low temperatures holes introduced via substitution of La by Sr segregate into lines to form boundaries between magnetically ordered domains in the form of stripes. The stripes become dynamic at high temperatures, but LSNO remains insulating presumably because an interplay between magnetic correlations and electron-phonon coupling localizes charge carriers. Magnetic degrees of freedom have been extensively investigated in this system, but phonons are almost completely unexplored. We searched for electron-phonon anomalies in LSNO by inelastic neutron scattering. Giant renormalization of plane Ni-O bond-stretching modes that modulate the volume around Ni appears on entering the dynamic charge stripe phase. Other phonons are a lot less sensitive to stripe melting. Dramatic overdamping of the breathing modes indicates that dynamic stripe phase may host small polarons. We argue that this feature sets electron-phonon coupling in nickelates apart from that in cuprates where breathing phonons are not overdamped and point out remarkable similarities with the colossal magnetoresistance manganites.

2.
Phys Rev Lett ; 123(4): 046401, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491257

ABSTRACT

In condensed matter physics many features can be understood in terms of their topological properties. Here we report evidence of a topological quantum transition driven by the charge-phonon coupling in the spinless Haldane model on a honeycomb lattice, a well-known prototypical model of the Chern insulator. Starting from parameters describing the topological phase in the bare Haldane model, we show that increasing the strength of the charge lattice coupling drives the system towards a trivial insulator. The average number of fermions in the Dirac point, characterized by the lowest gap, exhibits a finite discontinuity at the transition point and can be used as a direct indicator of the topological quantum transition. Numerical simulations show, also, that the renormalized phonon propagator exhibits a two peak structure across the quantum transition, whereas, in the absence of the mass term in the bare Haldane model, there is indication of a complete softening of the effective vibrational mode, signaling a charge density wave instability.

3.
Nat Commun ; 8: 14777, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300133

ABSTRACT

Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini-Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system.

4.
Nat Commun ; 7: 11622, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27181484

ABSTRACT

Second-order continuous phase transitions are characterized by symmetry breaking with order parameters. Topological orders of electrons, characterized by the topological index defined in momentum space, provide a distinct perspective for phase transitions, which are categorized as quantum phase transitions not being accompanied by symmetry breaking. However, there are still limited observations of counterparts in real space. Here we show a real-space topological phase transition in a chiral magnet MnGe, hosting a periodic array of hedgehog and antihedgehog topological spin singularities. This transition is driven by the pair annihilation of the hedgehogs and antihedgehogs acting as monopoles and antimonopoles of the emergent electromagnetic field. Observed anomalies in the magnetoresistivity and phonon softening are consistent with the theoretical prediction of critical phenomena associated with enhanced fluctuations of emergent field near the transition. This finding reveals a vital role of topology of the spins in strongly correlated systems.

6.
Nat Commun ; 7: 10386, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813124

ABSTRACT

Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm example is the interface between the two band insulators LaAlO3 and SrTiO3 that hosts a two-dimensional electron system. Apart from the mobile charge carriers, this system exhibits a range of intriguing properties such as field effect, superconductivity and ferromagnetism, whose fundamental origins are still debated. Here we use soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the LaAlO3 overlayer and access charge carriers at the buried interface. The experimental spectral function directly identifies the interface charge carriers as large polarons, emerging from coupling of charge and lattice degrees of freedom, and involving two phonons of different energy and thermal activity. This phenomenon fundamentally limits the carrier mobility and explains its puzzling drop at high temperatures.

7.
Phys Rev Lett ; 114(23): 237601, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196827

ABSTRACT

Electronic structure of the three-dimensional colossal magnetoresistive perovskite La(1-x)Sr(x)MnO3 has been established using soft-x-ray angle-resolved photoemission spectroscopy with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show much weaker polaronic coupling compared to the bilayer manganites and are consistent with the theoretical band structure including the empirical Hubbard parameter U. The experimental Fermi surface unveils the canonical topology of alternating three-dimensional electron spheres and hole cubes, with their shadow contours manifesting the rhombohedral lattice distortion. This picture has been confirmed by one-step photoemission calculations including displacement of the apical oxygen atoms. The rhombohedral distortion is neutral to the Jahn-Teller effect and thus polaronic coupling, but affects the double-exchange electron hopping and thus the colossal magnetoresistance effect.

8.
Phys Rev Lett ; 114(14): 146401, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910142

ABSTRACT

We present the first unbiased results for the mobility µ of a one-dimensional Holstein polaron obtained by numerical analytic continuation combined with diagrammatic and worldline Monte Carlo methods in the thermodynamic limit. We have identified for the first time several distinct regimes in the λ-T plane including a band conduction region, incoherent metallic region, an activated hopping region, and a high-temperature saturation region. We observe that although mobilities and mean free paths at different values of λ differ by many orders of magnitude at small temperatures, their values at T larger than the bandwidth become very close to each other.

9.
Phys Rev Lett ; 114(8): 086601, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25768773

ABSTRACT

The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150≤T≤200 K, where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.

10.
Phys Rev Lett ; 109(17): 176402, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23215207

ABSTRACT

The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultrashort powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a three-peak structure in agreement with experimental observations. After an ultrashort pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period T(ph)≈80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high T(c) compounds: the time span of the pump light pulse τ(pump) has to be shorter than the phonon oscillation period T(ph).

11.
Phys Rev Lett ; 105(26): 266605, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21231696

ABSTRACT

We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength λ, in all models where this coupling depends only on phonon momentum q. In the SSH model the coupling also depends on the electron momentum k; we find it has a sharp transition, at a critical coupling strength λ(c), between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at λ=λ(c). This result is representative of all polarons with coupling depending on k and q, and will have important experimental consequences (e.g., in angle-resolved photoemission spectroscopy and conductivity experiments).

12.
Phys Rev Lett ; 100(16): 166401, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18518226

ABSTRACT

The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the midinfrared band.

13.
Phys Rev Lett ; 99(14): 146405, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930694

ABSTRACT

The nonlocal nature of the polaron formation in t - t '- t'' - J model is studied in large lattices up to 64 sites by developing a new numerical method. We show that the effect of longer-range hoppings t' and t'' is a large anisotropy of the electron-phonon interaction (EPI) leading to a completely different influence of EPI on the nodal and antinodal points in agreement with the experiments. Furthermore, nonlocal EPI preserves polaron's quantum motion, which destroys the antiferromagnetic order effectively, even in the strong coupling regime, although the quasiparticle weight in angle-resolved-photoemission spectroscopy is strongly suppressed.

14.
Phys Rev Lett ; 99(22): 226402, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233306

ABSTRACT

We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J Holstein model giving perfect agreement with numerically exact diagrammatic Monte Carlo (DMC) data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures, we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.

15.
Phys Rev Lett ; 96(13): 136405, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16712012

ABSTRACT

The optical absorption of the Fröhlich polaron model is obtained by an approximation-free diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: (i) a strong coupling expansion, based on the Franck-Condon principle, well describes the optical conductivity for large coupling strengths (alpha > 10); (ii) a memory function formalism with phonon broadened levels reproduces the optical response for weak coupling strengths (alpha < 6) taking the dynamic lattice relaxation into account. In the coupling regime 6 < alpha < 10, the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions.

16.
Phys Rev Lett ; 93(3): 036402, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15323844

ABSTRACT

We present numeric results for ground state and angle resolved photoemission spectra (ARPES) for a single hole in the t-J model coupled to optical phonons. The systematic-error-free diagrammatic Monte Carlo method is employed where the Feynman graphs for the Matsubara Green function in imaginary time are summed up completely with respect to phonon variables, while magnetic variables are subjected to the noncrossing approximation. We obtain that at electron-phonon coupling constants relevant for high T(c) cuprates the polaron undergoes a self-trapping crossover to the strong-coupling limit and theoretical ARPES demonstrate features observed in experiment: A broad peak in the bottom of the spectra has momentum dependence which coincides with that of a hole in the pure t-J model.

17.
Phys Rev Lett ; 91(23): 236401, 2003 Dec 05.
Article in English | MEDLINE | ID: mdl-14683203

ABSTRACT

We present accurate results for optical conductivity of the three dimensional Fröhlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum correlation function in imaginary time are summed up. The real-frequency optical conductivity is obtained by the analytic continuation with stochastic optimization. We compare numerical data with available perturbative and nonperturbative approaches to the optical conductivity and show that the picture of sharp resonances due to relaxed excited states in the strong-coupling regime is "washed out" by large broadening of these states. As a result, the spectrum contains only a single-maximum broad peak with peculiar shape and a shoulder.

18.
Phys Rev Lett ; 86(20): 4624-7, 2001 May 14.
Article in English | MEDLINE | ID: mdl-11384299

ABSTRACT

The self-trapping by the nondiagonal particle-phonon interaction between two quasidegenerate energy levels of the excitonic system is studied. We propose this is realized in the charge-transfer exciton, where the directions of the polarization give the quasidegeneracy. It is shown that this mechanism, unlike the conventional diagonal one, allows a coexistence and resonance of the free and self-trapped states even in one-dimensional systems and a quantitative theory for the optical properties (light absorption and time-resolved luminescence) of the resonating states is presented. This theory gives a consistent resolution for the long-standing puzzles in quasi-one-dimensional compound A-PMDA.

19.
Med Radiol (Mosk) ; 32(11): 35-40, 1987 Nov.
Article in Russian | MEDLINE | ID: mdl-3683122

ABSTRACT

Lymphoscanning was performed in 149 patients with tuberculosis and chronic non-specific inflammatory diseases of the male sex organs. The patients were divided into 3 groups: I--73 patients with an active tuberculous process, II--22 patients with an inactive process, III--54 patients with chronic non-specific inflammatory diseases of the male sex organs. Intrafunicular (in the affection of the external sex organs) and paraprostatic (in the affection of the internal sex organs) administration of 198Au-comisole was developed and employed for lymphography followed by lymphoscanning 1 day after RP administration. The results of lymphoscanning have shown that the indices of the visualization of the groups of regional lymph nodes and the intensity of RP accumulation in them were the most informative.


Subject(s)
Lymphoscintigraphy , Tuberculosis, Lymph Node/diagnostic imaging , Tuberculosis, Male Genital/diagnostic imaging , Adolescent , Adult , Aged , Gold Radioisotopes/therapeutic use , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...