Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Protein Expr Purif ; 180: 105811, 2021 04.
Article in English | MEDLINE | ID: mdl-33347949

ABSTRACT

Banana bract mosaic virus (BBrMV) causes the banana bract mosaic disease in banana. It belongs to the genus Potyvirus within the family Potyviridae. To the best of our knowledge apart from BBrMV coat protein gene, there are no reports on cloning, expression and characterization of any other genes from BBrMV. In this study, the BBrMV P1 and NIa protease genes were amplified from BBrMV infected banana plant cultivar Nendran and were cloned into the protein expression vector pET28b. Recombinant plasmids were transferred to BL21-CodonPlus (DE3)-RP cells and the IPTG (Isopropyl ß-d-1-thiogalactopyranoside) induced BBrMV P1 and NIa proteins with molecular weights of 42 and 32 KDa respectively were purified on Ni-NTA resin column under denaturing conditions using 8 M urea. BBrMV P1 and NIa purified proteins were detected by Western blot using anti-histidine antibody. The activity of both P1 and NIa proteases in native form was analyzed through in-gel zymographic assay. The activities of both the proteases were strongly inhibited by PMSF, suggesting that both the proteases are the serine type proteases. Interestingly both the proteases showed a temperature optimum of 50 °C while the pH optimum was 8. Both proteases lost their activity when incubated at 70 °C for 1 h. This is the first report of expression, purification and characterization of BBrMV P1 and NIa proteases.


Subject(s)
Cloning, Molecular , Gene Expression , Peptide Hydrolases , Potyvirus/genetics , Viral Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Peptide Hydrolases/biosynthesis , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/isolation & purification , Potyvirus/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Viral Proteins/biosynthesis , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/isolation & purification
2.
Virusdisease ; 28(2): 156-163, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28770241

ABSTRACT

The banana is one of the world's most important livelihood crops. Banana plants are principally infected by four virus species, Banana bunchy top virus (genus Babuvirus), Cucumber mosaic virus (genus Cucumovirus), Banana streak virus (genus Badnavirus) and Banana bract mosaic virus (genus Potyvirus). The objective of this study is to understand the codon usage pattern and phylogeny of coat protein gene in different banana bract mosaic virus (BBrMV) isolates. The BBrMV Coat Protein (CP) gene was amplified from BBrMV infected banana plant samples collected from different districts of Tamil Nadu and Karnataka, India. Six new BBrMV isolates were submitted to National Center for Biotechnology Information. Phylogenetic analysis and codon usage indices were studied along with other isolates of BBrMV. Phylogenetic analysis of CP genes shows that most of BBrMV isolates are closely related to each other except KF385484.1 and KF385478.1. Relative codon usage patterns among different BBrMV isolates were calculated by software CodonW version 1.4.2. In BBrMV, codons with A-ended or U ended are the most preferential except the Leu and Gln whose optimized codons are CAG and UUG ending by G. The codon usage patterns of BBrMV isolates are principally influenced by mutational bias; however, compositional constraints along with mutational bias also play a major role.

SELECTION OF CITATIONS
SEARCH DETAIL