Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Cancer Res ; 24(8): 1987-2001, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29386221

ABSTRACT

Purpose: Tamoxifen remains an important hormonal therapy for ER-positive breast cancer; however, development of resistance is a major obstacle in clinics. Here, we aimed to identify novel mechanisms of tamoxifen resistance and provide actionable drug targets overcoming resistance.Experimental Design: Whole-transcriptome sequencing, downstream pathway analysis, and drug repositioning approaches were used to identify novel modulators [here: phosphodiesterase 4D (PDE4D)] of tamoxifen resistance. Clinical data involving tamoxifen-treated patients with ER-positive breast cancer were used to assess the impact of PDE4D in tamoxifen resistance. Tamoxifen sensitization role of PDE4D was tested in vitro and in vivo Cytobiology, biochemistry, and functional genomics tools were used to elucidate the mechanisms of PDE4D-mediated tamoxifen resistance.Results: PDE4D, which hydrolyzes cyclic AMP (cAMP), was significantly overexpressed in both MCF-7 and T47D tamoxifen-resistant (TamR) cells. Higher PDE4D expression predicted worse survival in tamoxifen-treated patients with breast cancer (n = 469, P = 0.0036 for DMFS; n = 561, P = 0.0229 for RFS) and remained an independent prognostic factor for RFS in multivariate analysis (n = 132, P = 0.049). Inhibition of PDE4D by either siRNAs or pharmacologic inhibitors (dipyridamole and Gebr-7b) restored tamoxifen sensitivity. Sensitization to tamoxifen is achieved via cAMP-mediated induction of unfolded protein response/ER stress pathway leading to activation of p38/JNK signaling and apoptosis. Remarkably, acetylsalicylic acid (aspirin) was predicted to be a tamoxifen sensitizer using a drug repositioning approach and was shown to reverse resistance by targeting PDE4D/cAMP/ER stress axis. Finally, combining PDE4D inhibitors and tamoxifen suppressed tumor growth better than individual groups in vivoConclusions: PDE4D plays a pivotal role in acquired tamoxifen resistance via blocking cAMP/ER stress/p38-JNK signaling and apoptosis. Clin Cancer Res; 24(8); 1987-2001. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Drug Resistance, Neoplasm , Receptors, Estrogen/metabolism , Second Messenger Systems/drug effects , Tamoxifen/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Endoplasmic Reticulum Stress/genetics , Female , Gene Expression Profiling , Humans , MAP Kinase Signaling System/drug effects , Mice , Models, Biological , Phosphodiesterase 4 Inhibitors/pharmacology , Stress, Physiological/genetics , Tamoxifen/therapeutic use , Xenograft Model Antitumor Assays
2.
BMC Genomics ; 17: 357, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27183847

ABSTRACT

BACKGROUND: A growing number of studies report an abnormal expression of Piwi-interacting RNAs (piRNAs) and the piRNA processing enzyme Piwi in many cancers. Whether this finding is an epiphenomenon of the chaotic molecular biology of the fast dividing, neoplastically transformed cells or is functionally relevant to tumorigenesisis is difficult to discern at present. To better understand the role of piRNAs in cancer development small laboratory fish models can make a valuable contribution. However, little is known about piRNAs in somatic and neoplastic tissues of fish. RESULTS: To identify piRNA clusters that might be involved in melanoma pathogenesis, we use several transgenic lines of medaka, and platyfish/swordtail hybrids, which develop various types of melanoma. In these tumors Piwi, is expressed at different levels, depending on tumor type. To quantify piRNA levels, whole piRNA populations of testes and melanomas of different histotypes were sequenced. Because no reference piRNA cluster set for medaka or Xiphophorus was yet available we developed a software pipeline to detect piRNA clusters in our samples and clusters were selected that were enriched in one or more samples. We found several loci to be overexpressed or down-regulated in different melanoma subtypes as compared to hyperpigmented skin. Furthermore, cluster analysis revealed a clear distinction between testes, low-grade and high-grade malignant melanoma in medaka. CONCLUSIONS: Our data imply that dysregulation of piRNA expression may be associated with development of melanoma. Our results also reinforce the importance of fish as a suitable model system to study the role of piRNAs in tumorigenesis.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genetic Association Studies , Germ Cells/metabolism , Melanoma/genetics , RNA, Small Interfering/genetics , Animals , Base Composition , Cyprinodontiformes , DNA Transposable Elements , Disease Models, Animal , Multigene Family , Oryzias , RNA, Small Interfering/chemistry
3.
Article in English | MEDLINE | ID: mdl-24462553

ABSTRACT

Malignant melanoma is the most aggressive and deadly form of skin cancer, with an almost 100% development of resistance to current therapeutic approaches at progression stages. The incidence of melanoma is steadily increasing worldwide. Although many details leading to the development of malignant melanoma are known, the complex process of melanomagenesis is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding-RNAs of ~22nt length that regulate gene expression at the post-transcriptional level. It is now well established that deregulated miRNA expression is seen in many cancers including melanoma. To further study the miRNA functions in melanoma formation and progression we use a transgenic melanoma model in Japanese ricefish (medaka; Oryzias latipes) and the natural Xiphophorus melanoma model. In these fishes, dependent on the genetic background various histo- and patho-types of tumors appear, comparable to human melanoma types. We have studied expression profiles of ten known human melanoma-associated miRNAs and their respective target gene expression in the fish melanoma models. We show that miRNAs of the miR-17-92 cluster (miR-20a2, miR-92a1, miR-17 and miR-18a), miR-126, miR-182, miR-210 and miR-214 are upregulated and their respective target genes (RUNX1, HIF1A, TGFBR2, THBS1 and JAK2) are down-regulated in melanoma. MicroRNA-125b is down-regulated and the target genes (ERBB3a and ERBB3b) are upregulated in fish melanomas. Results provide clear evidence that the fish melanoma-associated miRNAs and respective target genes are deregulated generally like in human melanoma. Our results confirm the value of fish; such as medaka and Xiphophorus as good model systems to identify and decipher molecular mechanisms associated with malignant melanoma.


Subject(s)
Cyprinodontiformes/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Melanoma/genetics , MicroRNAs/physiology , Oryzias/genetics , Skin Neoplasms/genetics , Animals , Humans , MicroRNAs/analysis
SELECTION OF CITATIONS
SEARCH DETAIL