Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Biotechnol ; 25(7): 807-824, 2024.
Article in English | MEDLINE | ID: mdl-38902930

ABSTRACT

Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.


Subject(s)
Genistein , Nanoparticles , Genistein/pharmacology , Genistein/therapeutic use , Genistein/chemistry , Humans , Animals , Nanoparticles/chemistry , Nanotechnology/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Neoplasms/drug therapy
2.
Curr Mol Med ; 24(3): 316-326, 2024.
Article in English | MEDLINE | ID: mdl-36959141

ABSTRACT

Neurodegenerative disorders (NDs) are progressive morbidities that represent a serious health issue in the aging world population. There is a contemporary upsurge in worldwide interest in the area of traditional remedies and phytomedicines are widely accepted by researchers due to their health-promoted effects and fewer side effects. Hesperidin, a flavanone glycoside present in the peels of citrus fruits, possesses various biological activities including anti-inflammatory and antioxidant actions. In various preclinical studies, hesperidin has provided significant protective actions in a variety of brain disorders such as Alzheimer's disease, epilepsy, Parkinson's disease, multiple sclerosis, depression, neuropathic pain, etc. as well as their underlying mechanisms. The findings indicate that the neuroprotective effects of hesperidin are mediated by modulating antioxidant defence activities and neural growth factors, diminishing apoptotic and neuro-inflammatory pathways. This review focuses on the potential role of hesperidin in managing and treating diverse brain disorders.


Subject(s)
Alzheimer Disease , Hesperidin , Neuroprotective Agents , Humans , Hesperidin/pharmacology , Hesperidin/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL