Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters










Publication year range
1.
Microbiol Res ; 284: 127726, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643524

ABSTRACT

Understanding rhizosphere microbial ecology is necessary to reveal the interplay between plants and associated microbial communities. The significance of rhizosphere-microbial interactions in plant growth promotion, mediated by several key processes such as auxin synthesis, enhanced nutrient uptake, stress alleviation, disease resistance, etc., is unquestionable and well reported in numerous literature. Moreover, rhizosphere research has witnessed tremendous progress due to the integration of the metagenomics approach and further shift in our viewpoint from taxonomic to functional diversity over the past decades. The microbial functional genes corresponding to the beneficial functions provide a solid foundation for the successful establishment of positive plant-microbe interactions. The microbial functional gene composition in the rhizosphere can be regulated by several factors, e.g., the nutritional requirements of plants, soil chemistry, soil nutrient status, pathogen attack, abiotic stresses, etc. Knowing the pattern of functional gene composition in the rhizosphere can shed light on the dynamics of rhizosphere microbial ecology and the strength of cooperation between plants and associated microbes. This knowledge is crucial to realizing how microbial functions respond to unprecedented challenges which are obvious in the Anthropocene. Unraveling how microbes-mediated beneficial functions will change under the influence of several challenges, requires knowledge of the pattern and composition of functional genes corresponding to beneficial functions such as biogeochemical functions (nutrient cycle), plant growth promotion, stress mitigation, etc. Here, we focus on the molecular traits of plant growth-promoting functions delivered by a set of microbial functional genes that can be useful to the emerging field of rhizosphere functional ecology.


Subject(s)
Plant Development , Plant Roots , Plants , Rhizosphere , Soil Microbiology , Plants/microbiology , Plant Roots/microbiology , Microbiota/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Metagenomics
2.
Int Microbiol ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38158469

ABSTRACT

BACKGROUND: Plukenetia volubilis Linneo is an oleaginous plant belonging to the family Euphorbiaceae. Due to its seeds containing a high content of edible oil and rich in vitamins, P. volubilis is cultivated as an economical plant worldwide. However, the cultivation and growth of P. volubilis is challenged by phytopathogen invasion leading to production loss. METHODS: In the current study, we tested the pathogenicity of fungal pathogens isolated from root rot infected P. volubilis plant tissues by inoculating them into healthy P. volubilis seedlings. Metagenomic sequencing was used to assess the shift in the fungal community of P. volubilis rhizosphere soil after root rot infection. RESULTS: Four Fusarium isolates and two Rhizopus isolates were found to be root rot causative agents of P. volubilis as they induced typical root rot symptoms in healthy seedlings. The metagenomic sequencing data showed that root rot infection altered the rhizosphere fungal community. In root rot infected soil, the richness and diversity indices increased or decreased depending on pathogens. The four most abundant phyla across all samples were Ascomycota, Glomeromycota, Basidiomycota, and Mortierellomycota. In infected soil, the relative abundance of each phylum increased or decreased depending on the pathogen and functional taxonomic classification. CONCLUSIONS: Based on our results, we concluded that Fusarium and Rhizopus species cause root rot infection of P. volubilis. In root rot infected P. volubilis, the shift in the rhizosphere fungal community was pathogen-dependent. These findings may serve as a key point for a future study on the biocontrol of root rot of P. volubilis.

3.
Environ Res ; 235: 116570, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37423356

ABSTRACT

Sulfonylurea herbicides have been widely used worldwide and play a significant role in modern agricultural production. However, these herbicides have adverse biological effects that can damage the ecosystems and harm human health. As such, rapid and effective techniques that remove sulfonylurea residues from the environment are urgently required. Attempts have been made to remove sulfonylurea residues from environment using various techniques such as incineration, adsorption, photolysis, ozonation, and microbial degradation. Among them, biodegradation is regarded as a practical and environmentally responsible way to eliminate pesticide residues. Microbial strains such as Talaromyces flavus LZM1, Methylopila sp. SD-1, Ochrobactrum sp. ZWS16, Staphylococcus cohnii ZWS13, Enterobacter ludwigii sp. CE-1, Phlebia sp. 606, and Bacillus subtilis LXL-7 can almost completely degrade sulfonylureas. The degradation mechanism of the strains is such that sulfonylureas can be catalyzed by bridge hydrolysis to produce sulfonamides and heterocyclic compounds, which deactivate sulfonylureas. The molecular mechanisms associated with microbial degradation of sulfonylureas are relatively poorly studied, with hydrolase, oxidase, dehydrogenase and esterase currently known to play a pivotal role in the catabolic pathways of sulfonylureas. Till date, there are no reports specifically on the microbial degrading species and biochemical mechanisms of sulfonylureas. Hence, in this article, the degradation strains, metabolic pathways, and biochemical mechanisms of sulfonylurea biodegradation, along with its toxic effects on aquatic and terrestrial animals, are discussed in depth in order to provide new ideas for remediation of soil and sediments polluted by sulfonylurea herbicides.


Subject(s)
Herbicides , Humans , Herbicides/analysis , Ecosystem , Sulfonylurea Compounds/toxicity , Sulfonylurea Compounds/chemistry , Sulfonylurea Compounds/metabolism , Sulfonamides , Agriculture , Biodegradation, Environmental
4.
Infect Genet Evol ; 112: 105450, 2023 08.
Article in English | MEDLINE | ID: mdl-37230159

ABSTRACT

Malaria in India is declining, in part due to the use of long-lasting insecticide-treated nets (LLINs) and vector control. Historically, the north-eastern region of India has contributed ~10%-12% of the nation's malaria burden. The important mosquito vectors in northeast India have long been considered to be Anopheles baimaii and An. minimus, both associated with forest habitats. Local deforestation and increased rice cultivation, along with widespread LLIN use, may be changing vector species composition. Understanding if and how vector species composition is changing is critical to successful malaria control. In Meghalaya state, malaria is now at a low level of endemicity with occasional seasonal outbreaks. In a biodiverse setting like Meghalaya, where >24 Anopheles mosquito species have been recorded, accurate morphological identification of all species is logistically challenging. To accurately determine Anopheles species richness in the West Khasi Hills (WKH) and West Jaintia Hills (WJH) districts, adult and larval mosquitoes were collected and identified using molecular methods of allele-specific PCR and cytochrome oxidase I DNA barcoding. In 14 villages across both districts, we identified high species richness, 19 species in total. Molecular findings indicated that An. minimus and An. baimaii were rare, while four other species (An. maculatus, An. pseudowillmori, An. jeyporiensis and An. nitidus) were abundant. Anopheles maculatus was highly prevalent in WKH (39% of light trap collections) and An. pseudowillmori in WJH (45%). Larvae of these four species were found in rice fields, suggesting that land cover change is influencing species composition change. Our results suggest that rice fields might be contributing to the observed abundance of An. maculatus and An. pseudowillmori, which could be playing a role in malaria transmission, either independently due to their high abundance, or in combination with An. baimaii and/or An. minimus.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Malaria/epidemiology , Mosquito Vectors/genetics , India/epidemiology , Genetic Variation
5.
Heliyon ; 9(4): e14637, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025788

ABSTRACT

Despite possessing attractive features such as autotrophic growth on minimal media, industrial applications of cyanobacteria are hindered by a lack of genetic manipulative tools. There are two important features that are important for an effective manipulation: a vector which can carry the gene, and an induction system activated through external stimuli, giving us control over the expression. In this study, we describe the construction of an improved RSF1010-based vector as well as a temperature-inducible RNA thermometer. RSF1010 is a well-studied incompatibility group Q (IncQ) vector, capable of replication in most Gram negative, and some Gram positive bacteria. Our designed vector, named pSM201v, can be used as an expression vector in some Gram positive and a wide range of Gram negative bacteria including cyanobacteria. An induction system activated via physical external stimuli such as temperature, allows precise control of overexpression. pSM201v addresses several drawbacks of the RSF1010 plasmid; it has a reduced backbone size of 5189 bp compared to 8684 bp of the original plasmid, which provides more space for cloning and transfer of cargo DNA into the host organism. The mobilization function, required for plasmid transfer into several cyanobacterial strains, is reduced to a 99 bp region, as a result that mobilization of this plasmid is no longer linked to the plasmid replication. The RNA thermometer, named DTT1, is based on a RNA hairpin strategy that prevents expression of downstream genes at temperatures below 30 °C. Such RNA elements are expected to find applications in biotechnology to economically control gene expression in a scalable manner.

6.
J Hazard Mater ; 452: 131287, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37003005

ABSTRACT

Methomyl is a widely used carbamate pesticide, which has adverse biological effects and poses a serious threat to ecological environments and human health. Several bacterial isolates have been investigated for removing methomyl from environment. However, low degradation efficiency and poor environmental adaptability of pure cultures severely limits their potential for bioremediation of methomyl-contaminated environment. Here, a novel microbial consortium, MF0904, can degrade 100% of 25 mg/L methomyl within 96 h, an efficiency higher than that of any other consortia or pure microbes reported so far. The sequencing analysis revealed that Pandoraea, Stenotrophomonas and Paracoccus were the predominant members of MF0904 in the degradation process, suggesting that these genera might play pivotal roles in methomyl biodegradation. Moreover, five new metabolites including ethanamine, 1,2-dimethyldisulfane, 2-hydroxyacetonitrile, N-hydroxyacetamide, and acetaldehyde were identified using gas chromatography-mass spectrometry, indicating that methomyl could be degraded firstly by hydrolysis of its ester bond, followed by cleavage of the C-S ring and subsequent metabolism. Furthermore, MF0904 can successfully colonize and substantially enhance methomyl degradation in different soils, with complete degradation of 25 mg/L methomyl within 96 and 72 h in sterile and nonsterile soil, respectively. Together, the discovery of microbial consortium MF0904 fills a gap in the synergistic metabolism of methomyl at the community level and provides a potential candidate for bioremediation applications.


Subject(s)
Methomyl , Pesticides , Humans , Methomyl/chemistry , Methomyl/metabolism , Biodegradation, Environmental , Pesticides/metabolism , Bacteria , Soil , Metabolic Networks and Pathways , Microbial Consortia
7.
J Agric Food Chem ; 71(17): 6650-6661, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37084257

ABSTRACT

Glyphosate is one of the most widely used herbicides worldwide. Unfortunately, the continuous use of glyphosate has resulted in serious environmental contamination and raised public concern about its impact on human health. In our previous study, Chryseobacterium sp. Y16C was isolated and characterized as an efficient degrader that can completely degrade glyphosate. However, the biochemical and molecular mechanisms underlying its glyphosate biodegradation ability remain unclear. In this study, the physiological response of Y16C to glyphosate stimulation was characterized at the cellular level. The results indicated that, in the process of glyphosate degradation, Y16C induced a series of physiological responses in the membrane potential, reactive oxygen species levels, and apoptosis. The antioxidant system of Y16C was activated to alleviate the oxidative damage caused by glyphosate. Furthermore, a novel gene, goW, was expressed in response to glyphosate. The gene product, GOW, is an enzyme that catalyzes glyphosate degradation, with putative structural similarities to glycine oxidase. GOW encodes 508 amino acids, with an isoelectric point of 5.33 and a molecular weight of 57.2 kDa, which indicates that it is a glycine oxidase. GOW displays maximum enzyme activity at 30 °C and pH 7.0. Additionally, most of the metal ions exhibited little influence on the enzyme activity except for Cu2+. Finally, with glyphosate as the substrate, the catalytic efficiency of GOW was higher than that of glycine, although opposite results were observed for the affinity. Taken together, the current study provides new insights to deeply understand and reveal the mechanisms of glyphosate degradation in bacteria.


Subject(s)
Chryseobacterium , Herbicides , Humans , Chryseobacterium/genetics , Chryseobacterium/metabolism , Glycine/metabolism , Bacteria/metabolism , Herbicides/pharmacology , Herbicides/metabolism , Glyphosate
8.
Chemosphere ; 326: 138390, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36935058

ABSTRACT

Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.


Subject(s)
Herbicides , Pyridines , Biodegradation, Environmental , Pyridines/chemistry , Sulfonylurea Compounds/chemistry , Herbicides/chemistry , Metabolic Networks and Pathways
9.
J Agric Food Chem ; 71(13): 5261-5274, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36962004

ABSTRACT

The acephate-degrading microbes that are currently available are not optimal. In this study, Burkholderia sp. A11, an efficient degrader of acephate, presented an acephate-removal efficiency of 83.36% within 56 h (100 mg·L-1). The A11 strain has a broad substrate tolerance and presents a good removal effect in the concentration range 10-1600 mg·L-1. Six metabolites from the degradation of acephate were identified, among which the main products were methamidophos, acetamide, acetic acid, methanethiol, and dimethyl disulfide. The main degradation pathways involved include amide bond breaking and phosphate bond hydrolysis. Moreover, strain A11 successfully colonized and substantially accelerated acephate degradation in different soils, degrading over 90% of acephate (50-200 mg·kg-1) within 120 h. 16S rDNA sequencing results further confirmed that the strain A11 gradually occupied a dominant position in the soil microbial communities, causing slight changes in the diversity and composition of the indigenous soil microbial community structure.


Subject(s)
Burkholderia , Insecticides , Organothiophosphorus Compounds , Biodegradation, Environmental , Insecticides/chemistry , Organophosphorus Compounds , Organothiophosphorus Compounds/chemistry , Phosphoramides , Soil , Burkholderia/metabolism
10.
Bioresour Technol ; 373: 128750, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36796731

ABSTRACT

Free cyanide is a hazardous pollutant released from steel industries. Environmentally-safe remediation of cyanide-contaminated wastewater is required. In this work, Pseudomonas stutzeri (ASNBRI_B12), Trichoderma longibrachiatum (ASNBRI_F9), Trichoderma saturnisporum (ASNBRI_F10) and Trichoderma citrinoviride (ASNBRI_F14) were isolated from blast-furnace wastewater and activated-sludge by enrichment culture. Elevated microbial growth, rhodanese activity (82 %) and GSSG (128 %) were observed with 20 mg-CN L-1. Cyanide degradation > 99 % on 3rd d as evaluated through ion chromatography, followed by first-order kinetics (r2 = 0.94-0.99). Cyanide degradation in wastewater (20 mg-CN L-1, pH 6.5) was studied in ASNBRI_F10 and ASNBRI_F14 which displayed increased biomass to 49.7 % and 21.6 % respectively. Maximum cyanide degradation of 99.9 % in 48 h was shown by an immobilized consortium of ASNBRI_F10 and ASNBRI_F14. FTIR analysis revealed that cyanide treatment alters functional groups on microbial cell walls. The novel consortium of T. saturnisporum-T. citrinoviride in the form of immobilized culture can be employed to treat cyanide-contaminated wastewater.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Cyanides/metabolism , Wastewater , Sewage , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
11.
Neural Comput Appl ; 35(7): 4975-4992, 2023.
Article in English | MEDLINE | ID: mdl-34341626

ABSTRACT

With the origin of smart homes, smart cities, and smart everything, smart phones came up as an area of magnificent growth and development. These devices became a part of daily activities of human life. This impact and growth have made these devices more vulnerable to attacks than other devices such as desktops or laptops. Text messages or SMS (Short Text Messages) are a part of smartphones through which attackers target the users. Smishing (SMS Phishing) is an attack targeting smartphone users through the medium of text messages. Though smishing is a type of phishing, it is different from phishing in many aspects like the amount of information available in the SMS, the strategy of attack, etc. Thus, detection of smishing is a challenge in the context of the minimum amount of information shared by the attacker. In the case of smishing, we have short text messages which are often in short forms or in symbolic forms. A single text message contains very few smishing-related features, and it consists of abbreviations and idioms which makes smishing detection more difficult. Detection of smishing is a challenge not only because of features constraint but also due to the scarcity of real smishing datasets. To differentiate spam messages from smishing messages, we are evaluating the legitimacy of the URL (Uniform Resource Locator) in the message. We have extracted the five most efficient features from the text messages to enable the machine learning classification using a limited number of features. In this paper, we have presented a smishing detection model comprising of two phases, Domain Checking Phase and SMS Classification Phase. We have examined the authenticity of the URL in the SMS which is a crucial part of SMS phishing detection. In our system, Domain Checking Phase scrutinizes the authenticity of the URL. SMS Classification Phase examines the text contents of the messages and extracts some efficient features. Finally, the system classifies the messages using Backpropagation Algorithm and compares results with three traditional classifiers. A prototype of the system has been developed and evaluated using SMS datasets. The results of the evaluation achieved an accuracy of 97.93% which shows the proposed method is very efficient for the detection of smishing messages.

12.
Mol Ecol ; 32(23): 6294-6303, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35770463

ABSTRACT

To understand soil biodiversity we need to know how soil communities are assembled. However, the relationship between soil community assembly and environmental factors, and the linkages between soil microbiota taxonomic groups and their body sizes, remain unexplored in tropical seasonal rainforests. Systematic and stratified random sampling was used to collect 243 soil and organism samples across a 20-ha plot in a tropical seasonal rainforest in southwestern China. High-throughput sequencing, variation analysis and principal coordinates of neighbourhood matrices were performed. Soil community composition, spatial distribution and assembly processes based on propagule size (including archaea, bacteria, fungi and nematodes) were investigated. The results showed that: (i) the community assembly of small soil microorganisms (bacteria, fungi) was mostly influenced by stochastic processes while that of larger soil organisms (nematodes) was more deterministic; (ii) the independent effects of habitat (including soil and topographic variables) and its interaction with plant attributes for community structure significantly decreased with increasing body size; and (iii) plant leaf phosphorus directly influenced the spatial distribution of soil-available phosphorus, which indicates their indirect impact on the assembly of the soil communities. Our data suggest that the assembly of multitrophic soil communities can be explained to some extent by changes in above-ground plant attributes. This highlights the importance of above- and below-ground linkages in influencing multitrophic soil microbiota community assembly.


Subject(s)
Microbiota , Rainforest , Soil/chemistry , Seasons , Plants/microbiology , Biodiversity , Microbiota/genetics , Bacteria/genetics , Fungi/genetics , Body Size , Soil Microbiology , Phosphorus
13.
Environ Res ; 218: 114953, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36504008

ABSTRACT

Neonicotinoids (NEOs) are fourth generation pesticides, which emerged after organophosphates, pyrethroids, and carbamates and they are widely used in vegetables, fruits, cotton, rice, and other industrial crops to control insect pests. NEOs are considered ideal substitutes for highly toxic pesticides. Multiple studies have reported NEOs have harmful impacts on non-target biological targets, such as bees, aquatic animals, birds, and mammals. Thus, the remediation of neonicotinoid-sullied environments has gradually become a concern. Microbial degradation is a key natural method for eliminating neonicotinoid insecticides, as biodegradation is an effective, practical, and environmentally friendly strategy for the removal of pesticide residues. To date, several neonicotinoid-degrading strains have been isolated from the environment, including Stenotrophomonas maltophilia, Bacillus thuringiensis, Ensifer meliloti, Pseudomonas stutzeri, Variovorax boronicumulans, and Fusarium sp., and their degradation properties have been investigated. Furthermore, the metabolism and degradation pathways of neonicotinoids have been broadly detailed. Imidacloprid can form 6-chloronicotinic acid via the oxidative cleavage of guanidine residues, and it is then finally converted to non-toxic carbon dioxide. Acetamiprid can also be demethylated to remove cyanoimine (=N-CN) to form a less toxic intermediate metabolite. A few studies have discussed the neonicotinoid toxicity and microbial degradation in contaminated environments. This review is focused on providing an in-depth understanding of neonicotinoid toxicity, microbial degradation, catabolic pathways, and information related to the remediation process of NEOs. Future research directions are also proposed to provide a scientific basis for the risk assessment and removal of these pesticides.


Subject(s)
Insecticides , Pesticides , Bees , Animals , Insecticides/toxicity , Insecticides/analysis , Neonicotinoids/toxicity , Neonicotinoids/analysis , Insecta/metabolism , Nitro Compounds/toxicity , Nitro Compounds/metabolism , Crops, Agricultural/metabolism , Biodegradation, Environmental , Mammals/metabolism
14.
Front Microbiol ; 13: 1009919, 2022.
Article in English | MEDLINE | ID: mdl-36466640

ABSTRACT

Microbial symbionts can influence a myriad of insect behavioral and physiological traits. However, how microbial communities may shape or be shaped by insect interactions with plants and neighboring species remains underexplored. The fig-fig wasp mutualism system offers a unique model to study the roles of microbiome in the interactions between the plants and co-habiting insects because a confined fig environment is shared by two fig wasp species, the pollinator wasp (Eupristina altissima and Eupristina verticillata) and the cheater wasp (Eupristina sp1 and Eupristina sp2). Here, we performed whole genome resequencing (WGS) on 48 individual fig wasps (Eupristina spp.) from Yunnan, China, to reveal the phylogenetic relationship and genetic divergence between pollinator and congeneric cheater wasps associated with the Ficus trees. We then extracted metagenomic sequences to explore the compositions, network structures, and functional capabilities of microbial communities associated with these wasps. We found that the cheaters and pollinators from the same fig species are sister species, which are highly genetically divergent. Fig wasps harbor diverse but stable microbial communities. Fig species dominate over the fig wasp genotype in shaping the bacterial and fungal communities. Variation in microbial communities may be partially explained by the filtering effect from fig and phylogeny of fig wasps. It is worth noting that cheaters have similar microbial communities to their sister pollinators, which may allow cheaters to coexist and gain resources from the same fig species. In terms of metabolic capabilities, some bacteria such as Desulfovibrio and Lachnospiraceae are candidates involved in the nutritional uptake of fig wasps. Our results provide novel insights into how microbiome community and metabolic functions may couple with the fig-wasp mutualistic systems.

15.
J Agric Food Chem ; 70(43): 13945-13958, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36278819

ABSTRACT

The overuse of glyphosate has resulted in serious environmental contamination. Thus, effective techniques to remove glyphosate from the environment are required. Herein, we isolated a novel strain Stenotrophomonas acidaminiphila Y4B, which completely degraded glyphosate and its major metabolite aminomethylphosphonic acid (AMPA). Y4B degraded glyphosate over a broad concentration range (50-800 mg L-1), with a degradation efficiency of over 98% within 72 h (50 mg L-1). Y4B degraded glyphosate via the AMPA pathway by cleaving the C-N bond, followed by degradation of AMPA and subsequent metabolism. Y4B demonstrated strong competitiveness and substantially accelerated the degradation of glyphosate in different soils, degrading 71.93 and 89.81% of glyphosate (400 mg kg-1) within 5 days in sterile and nonsterile soils, respectively. The immobilized cells of Y4B were more efficient than their free cells and they displayed excellent biodegradation efficiency in a sediment-water system. Taken together, Y4B is an ideal degrader for the bioremediation of glyphosate-contaminated sites.


Subject(s)
Microbiota , Soil , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Soil/chemistry , Glyphosate
16.
Environ Res ; 215(Pt 1): 114153, 2022 12.
Article in English | MEDLINE | ID: mdl-36049517

ABSTRACT

Glyphosate, as one of the broad-spectrum herbicides for controlling annual and perennial weeds, is widely distributed in various environments and seriously threatens the safety of human beings and ecology. Glyphosate is currently degraded by abiotic and biotic methods, such as adsorption, photolysis, ozone oxidation, and microbial degradation. Of these, microbial degradation has become the most promising method to treat glyphosate because of its high efficiency and environmental protection. Microorganisms are capable of using glyphosate as a phosphorus, nitrogen, or carbon source and subsequently degrade glyphosate into harmless products by cleaving C-N and C-P bonds, in which enzymes and functional genes related to glyphosate degradation play an indispensable role. There have been many studies on the abiotic and biotic treatment technologies, microbial degradation pathways and intermediate products of glyphosate, but the related enzymes and functional genes involved in the glyphosate degradation pathways have not been further discussed. There is little information on the resistance mechanisms of bacteria and fungi to glyphosate, and previous investigations of resistance mechanisms have mainly focused on how bacteria resist glyphosate damage. Therefore, this review explores the microorganisms, enzymes and functional genes related to the microbial degradation of glyphosate and discusses the pathways of microbial degradation and the resistance mechanisms of microorganisms to glyphosate. This review is expected to provide reference for the application and improvement of the microbial degradation of glyphosate in microbial remediation.


Subject(s)
Herbicides , Ozone , Carbon , Glycine/analogs & derivatives , Herbicides/toxicity , Humans , Nitrogen , Phosphorus , Glyphosate
17.
Environ Res ; 214(Pt 3): 113940, 2022 11.
Article in English | MEDLINE | ID: mdl-35952736

ABSTRACT

As a common pyrethroid insecticide, allethrin is widely used for various purposes in agriculture and home applications. At present, allethrin residues have been frequently detected worldwide, yet little is known about the kinetics and degradation mechanisms of this insecticide. In this study, a highly efficient allethrin-degrading bacterium, Bacillus megaterium strain HLJ7, was obtained through enrichment culture technology. Strain HLJ7 can remove 96.5% of 50 mg L-1 allethrin in minimal medium within 11 days. The first-order kinetic analysis of degradation demonstrated that the half-life of allethrin degradation by strain HLJ7 was 3.56 days, which was significantly shorter than the 55.89 days of the control. The Box-Behnken design of the response surface method optimized the degradation conditions for strain HLJ7: temperature 32.18 °C, pH value 7.52, and inoculation amount 1.31 × 107 CFU mL-1. Using Andrews equation, the optimal concentration of strain HLJ7 to metabolize allethrin was determined to be 21.15 mg L-1, and the maximum specific degradation rate (qmax), half-rate constant (Ks) and inhibition coefficient (Ki) were calculated to be 1.80 d-1, 1.85 mg L-1 and 68.13 mg L-1, respectively. Gas chromatography-mass spectrometry identified five intermediate metabolites, suggesting that allethrin could be degraded firstly by cleavage of its carboxylester bond, followed by degradation of the five-carbon ring and subsequent metabolism. The results of soil remediation experiments showed that strain HLJ7 has excellent bioremediation potential in the soils. After 15 days of treatment, about 70.8% of the initial allethrin (50 mg kg-1) was removed and converted into nontoxic intermediate metabolites, and its half-life was significantly reduced in the soils. Taken together, these findings shed light on the degradation mechanisms of allethrin and also highlight the promising potentials of B. megaterium HLJ7 in bioremediation of allethrin-comtaminated environment.


Subject(s)
Bacillus megaterium , Insecticides , Soil Pollutants , Allethrins , Bacillus megaterium/metabolism , Biodegradation, Environmental , Insecticides/metabolism , Kinetics , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism , Water
18.
Sci Total Environ ; 842: 156863, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35750182

ABSTRACT

The concept of microbial functional genes has added a new dimension to microbial ecology research by improving the model of microbial community-ecosystem functions relationship. However, our knowledge vis-à-vis fine-scale spatial distribution pattern of functional genes and their probable impact on plant community in the hyper-diverse tropical forest ecosystem is very limited. Here, we investigated the spatial pattern of functional genes abundance (NirK, AOA, AOB, and PhoD), identified key influencing factors, and distinguished the key functional group supporting the plant community in a tropical rainforest located in Xishuangbanna. In total, 200 soil samples and vegetation data of ~4800 individuals of plants across a 1 ha study area were collected. Our results detected higher spatial variability with a maximum magnitude of abundance for PhoD gene (4.53 × 107 copies) followed by NirK (2.71 × 106 copies), AOA (1.97 × 106 copies), and AOB (7.38 × 104 copies). A strong spatial dependence was observed for PhoD and NirK over the distance of 17 and 18 m, respectively. Interestingly, the N:P stoichiometry played a critical role in structuring the spatial pattern of the most abundant PhoD gene. The significant positive and negative relationship of PhoD with N:P ratio and available phosphorus, respectively, indicated that the P-limiting environment was a driving factor for recruitment of PhoD gene community. The structural equation modeling ascertained the direct positive impact of PhoD on plant biomass and high demand of available P by plants suggesting that the organic phosphorus mineralization process is essential to maintain plant productivity by re-establishing the availability of the most limiting P nutrient. Our preliminary study improves our understanding of how microbial functional genes-environment associations could be used for monitoring soil health and its overall impact on ecosystem multifunctionality. Finally, we intend to conduct the study at a large spatial scale for achieving a holistic view.


Subject(s)
Microbiota , Soil Microbiology , Bacteria/genetics , China , Ecosystem , Forests , Humans , Phosphorus/analysis , Soil/chemistry
19.
Front Microbiol ; 13: 713375, 2022.
Article in English | MEDLINE | ID: mdl-35422769

ABSTRACT

As members of the organochlorine group of insecticides, aldrin and dieldrin are effective at protecting agriculture from insect pests. However, because of excessive use and a long half-life, they have contributed to the major pollution of the water/soil environments. Aldrin and dieldrin have been reported to be highly toxic to humans and other non-target organisms, and so their use has gradually been banned worldwide. Various methods have been tried to remove them from the environment, including xenon lamps, combustion, ion conversion, and microbial degradation. Microbial degradation is considered the most promising treatment method because of its advantages of economy, environmental protection, and convenience. To date, a few aldrin/dieldrin-degrading microorganisms have been isolated and identified, including Pseudomonas fluorescens, Trichoderma viride, Pleurotus ostreatus, Mucor racemosus, Burkholderia sp., Cupriavidus sp., Pseudonocardia sp., and a community of anaerobic microorganisms. Many aldrin/dieldrin resistance genes have been identified from insects and microorganisms, such as Rdl, bph, HCo-LGC-38, S2-RDLA302S , CSRDL1A, CSRDL2S, HaRdl-1, and HaRdl-2. Aldrin degradation includes three pathways: the oxidation pathway, the reduction pathway, and the hydroxylation pathway, with dieldrin as a major metabolite. Degradation of dieldrin includes four pathways: oxidation, reduction, hydroxylation, and hydrolysis, with 9-hydroxydieldrin and dihydroxydieldrin as major products. Many studies have investigated the toxicity and degradation of aldrin/dieldrin. However, few reviews have focused on the microbial degradation and biochemical mechanisms of aldrin/dieldrin. In this review paper, the microbial degradation and degradation mechanisms of aldrin/dieldrin are summarized in order to provide a theoretical and practical basis for the bioremediation of aldrin/dieldrin-polluted environment.

20.
SN Comput Sci ; 3(3): 189, 2022.
Article in English | MEDLINE | ID: mdl-35308803

ABSTRACT

Neural network creates a neuron-based network similar to the human nervous system to solve classification problems efficiently. The smishing problem is a binary classification problem in which attackers target smartphone users through text messages. As smishing is a remarkable cybersecurity issue that is troubling researchers and smartphone users these days. Addressing this security issue using the most efficient algorithm is the need of the hour. This manuscript presented an algorithm for the model proposed by authors in 'Smishing Detector' model and implemented it using Neural Network. The result obtained proves that the neural network is much efficient in detecting smishing problem. Neural Network outperformed other machine learning algorithms with a difference of 1.11%. Neural Network performed with the final accuracy of 97.40%. In this paper, system extracted the most efficient features of smishing SMS (Short Message Service) using the Neural Network. This manuscript also reported the accuracy shown by the system for each feature selected and implemented. It is evident from the implementation that each feature selected is most effective in smishing detection and URL (Uniform Resource Locator) feature is the most effective feature with an accuracy of 94%.

SELECTION OF CITATIONS
SEARCH DETAIL
...