Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 15964, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153400

ABSTRACT

While stripe phases with broken rotational symmetry of charge density are known to emerge in doped strongly correlated perovskites, the dynamics and heterogeneity of spatial ordering remain elusive. Here we shed light on the temperature dependent lattice motion and the spatial nanoscale phase separation of charge density wave order in the archetypal striped phase in La2-xSrxNiO4+y (LSNO) perovskite using X-ray photon correlation spectroscopy (XPCS) joint with scanning micro X-ray diffraction (SµXRD). While it is known that the CDW in 1/8 doped cuprates shows a remarkable stability we report the CDW motion dynamics by XPCS in nickelates with an anomalous quantum glass regime at low temperature, T < 65 K, and the expected thermal melting at higher temperature 65 < T < 120 K. The nanoscale CDW puddles with a shorter correlation length are more mobile than CDW puddles with a longer correlation length. The direct imaging of nanoscale spatial inhomogeneity of CDW by scanning micro X-ray diffraction (SµXRD) shows a nanoscale landscape of percolating short range dynamic CDW puddles competing with large quasi-static CDW puddles giving rise to a novel form of nanoscale phase separation of the incommensurate stripes order landscape.

2.
Phys Rev Lett ; 127(5): 057001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397237

ABSTRACT

We study the temporal stability of stripe-type spin order in a layered nickelate with x-ray photon correlation spectroscopy and observe fluctuations on timescales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up on both heating and cooling. This behavior appears to be directly connected with spatial correlations: stripes fluctuate slowly when stripe correlation lengths are large and become faster when spatial correlations decrease. A low-temperature decay of nickelate stripe correlations, reminiscent of what occurs in cuprates as a result of a competition between stripes and superconductivity, hence occurs via loss of both spatial and temporal correlations.

3.
Chem Commun (Camb) ; 56(94): 14897-14900, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33180068

ABSTRACT

We present here the results of low-temperature magnetization and X-ray magnetic circular dichroism studies on the single crystals of BaFe12O19 which reveal for the first time the emergence of a spin glass phase, in coexistence with a long-range ordered ferrimagnetic phase, due to the freezing of the basal plane spin component.

4.
Prog Lipid Res ; 78: 101031, 2020 04.
Article in English | MEDLINE | ID: mdl-32339554

ABSTRACT

Glycolipid transfer proteins (GLTPs) were first identified over three decades ago as ~24kDa, soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. Upon discovery that GLTPs use a unique, all-α-helical, two-layer 'sandwich' architecture (GLTP-fold) to bind glycosphingolipids (GSLs), a new protein superfamily was born. Structure/function studies have provided exquisite insights defining features responsible for lipid headgroup selectivity and hydrophobic 'pocket' adaptability for accommodating hydrocarbon chains of differing length and unsaturation. In humans, evolutionarily-modified GLTP-folds have been identified with altered sphingolipid specificity, e. g. ceramide-1-phosphate transfer protein (CPTP), phosphatidylinositol 4-phosphate adaptor protein-2 (FAPP2) which harbors a GLTP-domain and GLTPD2. Despite the wealth of structural data (>40 Protein Data Bank deposits), insights into the in vivo functional roles of GLTP superfamily members have emerged slowly. In this review, recent advances are presented and discussed implicating human GLTP superfamily members as important regulators of: i) pro-inflammatory eicosanoid production associated with Group-IV cytoplasmic phospholipase A2; ii) autophagy and inflammasome assembly that drive surveillance cell release of interleukin-1ß and interleukin-18 inflammatory cytokines; iii) cell cycle arrest and necroptosis induction in certain colon cancer cell lines. The effects exerted by GLTP superfamily members appear linked to their ability to regulate sphingolipid homeostasis by acting in either transporter and/or sensor capacities. These timely findings are opening new avenues for future cross-disciplinary, translational medical research involving GLTP-fold proteins in human health and disease. Such avenues include targeted regulation of specific GLTP superfamily members to alter sphingolipid levels as a therapeutic means for combating viral infection, neurodegenerative conditions and circumventing chemo-resistance during cancer treatment.


Subject(s)
Autophagy , Carrier Proteins/metabolism , Cell Death , Inflammation/metabolism , Humans
5.
Anal Chem ; 92(4): 3417-3425, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31970977

ABSTRACT

In vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility. To overcome these limitations, we have assessed model membrane generation by bicelle dilution for monitoring the transfer rates and specificity of various BODIPY-labeled sphingolipids by different glycolipid transfer protein (GLTP) superfamily members using a sensitive fluorescence resonance energy transfer approach. Robust, protein-selective sphingolipid transfer is observed using donor and acceptor model membranes generated by dilution of 0.5 q-value mixtures. The sphingolipid transfer rates are comparable to those observed between small bilayer vesicles produced by sonication or ethanol injection. Among the notable advantages of using bicelle-generated model membranes are (i) easy and straightforward preparation by means that avoid lipid fluorophore degradation and (ii) long "shelf life" after production (≥6 days) and resilience to freeze-thaw storage. The bicelle-dilution-based assay is sufficiently robust, sensitive, and stable for application, not only to purified LTPs but also for LTP activity detection in crude cytosolic fractions of cell homogenates.


Subject(s)
Carrier Proteins/analysis , Lipid Bilayers/metabolism , Models, Biological , Sphingolipids/metabolism , Biological Transport , Carrier Proteins/metabolism , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Lipid Bilayers/chemistry , Sphingolipids/chemistry
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(2): 158-167, 2019 02.
Article in English | MEDLINE | ID: mdl-30472325

ABSTRACT

Human GLTP on chromosome 12 (locus 12q24.11) encodes a 24 kD amphitropic lipid transfer protein (GLTP) that mediates glycosphingolipid (GSL) intermembrane trafficking and regulates GSL homeostatic levels within cells. Herein, we provide evidence that GLTP overexpression inhibits the growth of human colon carcinoma cells (HT-29; HCT-116), but spares normal colonic cells (CCD-18Co). Mechanistic studies reveal that GLTP overexpression arrested the cell cycle at the G1/S checkpoint via upregulation of cyclin-dependent kinase inhibitor-1B (Kip1/p27) and cyclin-dependent kinase inhibitor 1A (Cip1/p21) at the protein and mRNA levels, and downregulation of cyclin-dependent kinase-2 (CDK2), cyclin-dependent kinase-4 (CDK4), cyclin E and cyclin D1 protein levels. Assessment of the biological fate of HCT-116 cells overexpressing GLTP indicated no increase in cell death suggesting induction of quiescence. However, HT-29 cells overexpressing GLTP underwent cell death by necroptosis as revealed by phosphorylation of human mixed lineage kinase domain-like protein (pMLKL) via receptor-interacting protein kinase-3 (RIPK-3), elevated cytosolic calcium, and plasma membrane permeabilization by pMLKL oligomerization. Overexpression of W96A-GLTP, an ablated GSL binding site mutant, failed to arrest the cell cycle or induce necroptosis. Sphingolipid assessment (ceramide, monohexosylceramide, sphingomyelin, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate) of HT-29 cells overexpressing GLTP revealed large decreases (>5-fold) in sphingosine-1-phosphate with minimal change in 16:0-ceramide, tipping the 'sphingolipid rheostat' (S1P/16:0-Cer ratio) towards cell death. Depletion of RIPK-3 or MLKL abrogated necroptosis induced by GLTP overexpression. Our findings establish GLTP upregulation as a previously unknown suppressor of human colon carcinoma HT-29 cells via interference with cell cycle progression and induction of necroptosis.


Subject(s)
Carrier Proteins/metabolism , Colonic Neoplasms/metabolism , Necrosis/metabolism , Apoptosis , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Cycle/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/genetics , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase Inhibitor p21 , Cyclin-Dependent Kinase Inhibitor p27 , Humans , Necrosis/genetics , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sphingolipids/metabolism , Up-Regulation
7.
J Biol Chem ; 293(43): 16709-16723, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30206120

ABSTRACT

The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with N-oleoyl-galactosylceramide. Using this domain, FAPP2 transports glucosylceramide from its cis-Golgi synthesis site to the trans-Golgi for conversion into complex GSLs. The FAPP2-GLTPH structure revealed an element, termed the ID loop, that controls specificity in the GLTP family. We found that, in accordance with FAPP2 preference for simple GSLs, the ID loop protrudes from behind the SL headgroup-recognition center to mitigate binding by complex GSLs. Mutational analyses including GLTP and FAPP2 chimeras with swapped ID loops supported the proposed restrictive role of the FAPP2 ID loop in GSL selectivity. Comparative analysis revealed distinctly designed ID loops in each GLTP family member. This analysis also disclosed a conserved H-bond triplet that "clasps" both ID-loop ends together to promote structural autonomy and rigidity. The findings indicated that various ID loops work in concert with conserved recognition centers to create different specificities among family members. We also observed four bulky, conserved hydrophobic residues involved in "sensor-like" interactions with lipid chains in protein hydrophobic pockets and FF motifs in GLTP and FAPP2, well-positioned to provide acyl chain-dependent SL selectivity for the hydrophobic pockets. In summary, our study provides mechanistic insights into sphingolipid recognition by the GLTP fold and uncovers the elements involved in this recognition.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Carrier Proteins/chemistry , Sphingolipids/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Molecular Sequence Data , Multigene Family , Protein Conformation , Sequence Alignment , Sphingolipids/metabolism
8.
Autophagy ; 14(5): 862-879, 2018.
Article in English | MEDLINE | ID: mdl-29164996

ABSTRACT

The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1ß and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.


Subject(s)
Autophagy , Carrier Proteins/metabolism , Inflammasomes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Autophagy-Related Proteins/metabolism , Binding Sites , Caspase 1/metabolism , Ceramides/pharmacology , Cytokines/metabolism , Down-Regulation/drug effects , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans , Inflammation Mediators/metabolism , Membrane Proteins/metabolism , Mutation/genetics , TOR Serine-Threonine Kinases/metabolism , Vesicular Transport Proteins/metabolism
9.
J Biol Chem ; 292(6): 2531-2541, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28011644

ABSTRACT

Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant (acd11). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, "soluble" phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid.


Subject(s)
Carrier Proteins/metabolism , Ceramides/metabolism , Phosphatidylserines/physiology , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Biological Transport , Carrier Proteins/chemistry , Cell Line , Crystallography, X-Ray , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phospholipid Transfer Proteins , Protein Binding , Static Electricity
10.
Int J Cancer ; 135(11): 2493-506, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24752651

ABSTRACT

High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/ß-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans.


Subject(s)
Black or African American/statistics & numerical data , Genes, Tumor Suppressor , Nerve Tissue Proteins/metabolism , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/pathology , Receptors, Immunologic/metabolism , White People/statistics & numerical data , Blotting, Western , Cadherins/genetics , Cadherins/metabolism , Cell Movement , Cell Proliferation , Cohort Studies , Disease Progression , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Immunoenzyme Techniques , Male , Neoplasm Metastasis , Neoplasm Staging , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Phenotype , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Wound Healing , beta Catenin/genetics , beta Catenin/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Roundabout Proteins
11.
Nature ; 500(7463): 463-7, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23863933

ABSTRACT

Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated 'sandwich' topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.


Subject(s)
Carrier Proteins/metabolism , Ceramides/metabolism , Eicosanoids/metabolism , Animals , Apoproteins/chemistry , Arachidonic Acid/metabolism , Biological Transport , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Membrane/metabolism , Cell Nucleus/metabolism , Ceramides/chemistry , Crystallography, X-Ray , Cytosol/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Models, Molecular , Phosphatidic Acids/chemistry , Phosphatidic Acids/metabolism , Phospholipid Transfer Proteins , Protein Conformation , Protein Folding , Substrate Specificity , trans-Golgi Network/metabolism
12.
Malar Res Treat ; 2013: 141734, 2013.
Article in English | MEDLINE | ID: mdl-23607047

ABSTRACT

The present study was aimed to find out the protective effect of quercetin on hepatotoxicity resulting by commonly used antimalarial drug chloroquine (CQ). Swiss albino mice were administered with different amounts of CQ ranging from human therapeutic equivalent of 360 mg/kg body wt. to as high as 2000 mg/kg body wt. We observed statistically significant generation of reactive oxygen species, liver toxicity, and oxidative stress. Our observation of alterations in biochemical parameters was strongly supported by real-time PCR measurement of mRNA expression of key biochemical enzymes involved in hepatic toxicity and oxidative stress. However, the observed hepatotoxicity and accompanying oxidative stress following CQ administration show dose specific pattern with little or apparently no effect at therapeutic dose while having severe effects at higher dosages. We further tested quercetin, an antioxidant flavanoid, against CQ-induced hepatoxicity and found encouraging results as quercetin was able to drastically reduce the oxidative stress and hepatotoxicity resulting at higher dosages of CQ administration. In conclusion, our study strongly suggests co administration of antioxidant flavonoid like quercetin along with CQ for antimalarial therapy. This is particularly important when CQ is administered as long-term prophylactic treatment for malaria as chronic exposure has shown to be resulting in higher dose level of drug in the body.

13.
PLoS One ; 7(2): e31964, 2012.
Article in English | MEDLINE | ID: mdl-22359648

ABSTRACT

Apigenin, a dietary flavonoid, is reported to have several therapeutic effects in different diseases including cancer. Toxicity of Apigenin is however, least explored, and reports are scanty in literature. This warrants dose-specific evaluation of toxicity in vivo. In the present study, Apigenin was administered intraperitoneally to Swiss mice at doses of 25, 50, 100 and 200 mg/kg. Serum levels of alanine amino transferase (ALT), aspartate amino transferase (AST) and alkaline phosphatase (ALP) were measured along with the examination of liver histology, reactive oxygen species (ROS) in blood, lipid peroxidation (LPO), glutathione level, superoxide dismutase activity, catalase activity, glutathione S-transferase activity and gene expression in liver tissue. Increase in ALT, AST, ALP, ROS, ratio of oxidized to reduced glutathione (GSSG/GSH) and LPO, altered enzyme activities along with damaged histoarchitecture in the liver of 100 or 200 mg/kg Apigenin treated animals were found. Microarray analysis revealed the differential expression of genes that correspond to different biologically relevant pathways including oxidative stress and apoptosis. In conclusion, these results suggested the oxidative stress induced liver damage which may be due to the regulation of multiple genes by Apigenin at higher doses in Swiss mice.


Subject(s)
Apigenin/toxicity , Chemical and Drug Induced Liver Injury/etiology , Animals , Apoptosis/genetics , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Dose-Response Relationship, Drug , Enzymes/blood , Gene Expression Profiling , Gene Expression Regulation , Mice , Oxidative Stress/genetics , Reactive Oxygen Species/blood
14.
Int J Cancer ; 131(7): 1720-31, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22190076

ABSTRACT

Activated Kras gene coupled with activation of Akt and nuclear factor-kappa B (NF-κB) triggers the development of pancreatic intraepithelial neoplasia, the precursor lesion for pancreatic ductal adenocarcinoma (PDAC) in humans. Therefore, intervention at premalignant stage of disease is considered as an ideal strategy to delay the tumor development. Pancreatic malignant tumor cell lines are widely used; however, there are not relevant cell-based models representing premalignant stages of PDAC to test intervention agents. By employing a novel Kras-driven cell-based model representing premalignant and malignant stages of PDAC, we investigated the efficacy of ACTICOA-grade cocoa polyphenol (CP) as a potent chemopreventive agent under in vitro and in vivo conditions. It is noteworthy that several human intervention/clinical trials have successfully established the pharmacological benefits of cocoa-based foods. The liquid chromatography (LC)-mass spectrometry (MS)/MS data confirmed epicatechin as the major polyphenol of CP. Normal, nontumorigenic and tumorigenic pancreatic ductal epithelial (PDE) cells (exhibiting varying Kras activity) were treated with CP and epicatechin. CP and epicatechin treatments induced no effect on normal PDE cells, however, caused a decrease in the (i) proliferation, (ii) guanosine triphosphate (GTP)-bound Ras protein, (iii) Akt phosphorylation and (iv) NF-κB transcriptional activity of premalignant and malignant Kras-activated PDE cells. Further, oral administration of CP (25 mg/kg) inhibited the growth of Kras-PDE cell-originated tumors in a xenograft mouse model. LC-MS/MS analysis of the blood showed epicatechin to be bioavailable to mice after CP consumption. We suggest that (i) Kras-driven cell-based model is an excellent model for testing intervention agents and (ii) CP is a promising chemopreventive agent for inhibiting PDAC development.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cacao/chemistry , Carcinoma, Pancreatic Ductal/genetics , Catechin/chemistry , Genes, ras , Pancreatic Neoplasms/genetics , Polyphenols/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/drug therapy , Cell Cycle Checkpoints/drug effects , Cell Proliferation , Cell Transformation, Neoplastic/drug effects , Disease Models, Animal , Humans , Mice , Mice, Nude , NF-kappa B/genetics , NF-kappa B/metabolism , Pancreatic Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Polyphenols/administration & dosage , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Tandem Mass Spectrometry , Transcription, Genetic
15.
Cancer Metastasis Rev ; 31(1-2): 163-72, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22109080

ABSTRACT

The fatality of cancer is mainly bestowed to the property of otherwise benign tumor cells to become malignant and invade surrounding tissues by circumventing normal tissue barriers through a process called metastasis. S100A4 which is a member of the S100 family of calcium-binding proteins has been shown to be able to activate and integrate pathways both intracellular and extracellular to generate a phenotypic response characteristic of cancer metastasis. A large number of studies have shown an increased expression level of S100A4 in various types of cancers. However, its implications in cancer metastasis in terms of whether an increased expression of S100A4 is a causal factor for metastasis or just another after effect of several other physiological and molecular changes in the body resulting from metastasis are not clear. Here we describe the emerging preclinical and clinical evidences implicating S100A4 protein, in both its forms (intracellular and extracellular) in the process of tumorigenesis and metastasis in humans. Based on studies utilizing S100A4 as a metastasis biomarker and molecular target for therapies such as gene therapy, we suggest that S100A4 has emerged as a promising molecule to be tested for anticancer drugs. This review provides an insight in the (1) molecular mechanisms through which S100A4 drives the tumorigenesis and metastasis and (2) developments made in the direction of evaluating S100A4 as a cancer biomarker and drug target.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , S100 Proteins/metabolism , Animals , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasms/mortality , Neoplasms/therapy , Protein Binding , S100 Calcium-Binding Protein A4 , S100 Proteins/chemistry , S100 Proteins/genetics , Transcription, Genetic
16.
Clin Cancer Res ; 17(16): 5379-91, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21712449

ABSTRACT

PURPOSE: Conventional therapies to treat prostate cancer (CaP) of androgen-dependent phenotype (ADPC) and castration-resistant phenotype (CRPC) are deficient in outcome which has necessitated a need to identify those agents that could target AR for both disease types. We provide mechanism-based evidence that lupeol (Lup-20(29)-en-3b-ol) is a potent inhibitor of androgen receptor (AR) in vitro and in vivo. EXPERIMENTAL DESIGN: Normal prostate epithelial cell (RWPE-1), LAPC4 (wild functional AR/ADPC), LNCaP (mutant functional/AR/ADPC), and C4-2b (mutant functional/AR/CRPC) cells were used to test the anti-AR activity of lupeol. Cells grown under androgen-rich environment and treated with lupeol were tested for proliferation, AR transcriptional activity, AR competitive ligand binding, AR-DNA binding, and AR-ARE/target gene binding. Furthermore, in silico molecular modeling for lupeol-AR binding was done. Athymic mice bearing C4-2b and LNCaP cell-originated tumors were treated intraperitoneally with lupeol (40 mg/kg; 3 times/wk) and tumor growth and surrogate biomarkers were evaluated. To assess bioavailability, lupeol serum levels were measured. RESULTS: Lupeol significantly inhibited R1881 (androgen analogue) induced (i) transcriptional activity of AR and (ii) expression of PSA. Lupeol (i) competed antagonistically with androgen for AR, (ii) blocked the binding of AR to AR-responsive genes including PSA, TIPARP, SGK, and IL-6, and (iii) inhibited the recruitment of RNA Pol II to target genes. Lupeol sensitized CRPC cells to antihormone therapy. High-performance liquid chromatography analysis showed that lupeol is bioavailable to mice. Lupeol inhibited the tumorigenicity of both ADPC and CRPC cells in animals. Serum and tumor tissues exhibited reduced PSA levels. CONCLUSION: Lupeol, an effective AR inhibitor, could be developed as a potential agent to treat human CaP.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Pentacyclic Triterpenes/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Xenograft Model Antitumor Assays , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/metabolism , Animals , Binding Sites , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunoblotting , Male , Mice , Mice, Nude , Models, Molecular , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/metabolism , Promoter Regions, Genetic/genetics , Prostate-Specific Antigen/blood , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , RNA Polymerase II/metabolism , Receptors, Androgen/chemistry , Reverse Transcriptase Polymerase Chain Reaction
17.
Malar J ; 10: 109, 2011 May 02.
Article in English | MEDLINE | ID: mdl-21529379

ABSTRACT

BACKGROUND: Amodiaquine (AQ) along with sulphadoxine-pyrimethamine (SP) offers effective and cheaper treatment against chloroquine-resistant falciparum malaria in many parts of sub-Saharan Africa. Considering the previous history of hepatitis, agranulocytosis and neutrocytopenia associated with AQ monotherapy, it becomes imperative to study the toxicity of co-administration of AQ and SP. In this study, toxicity and resulting global differential gene expression was analyzed following exposure to these drugs in experimental Swiss mice. METHODS: The conventional markers of toxicity in serum, oxidative stress parameters in tissue homogenates, histology of liver and alterations in global transcriptomic expression were evaluated to study the toxic effects of AQ and SP in isolation and in combination. RESULTS: The combination therapy of AQ and SP results in more pronounced hepatotoxicity as revealed by elevated level of serum ALT, AST with respect to their individual drug exposure regimen. Furthermore, alterations in the activity of major antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase), indicating the development of oxidative stress, was more significant in AQ+SP combination therapy. cDNA microarray results too showed considerably more perturbed gene expression following combination therapy of AQ and SP as compared to their individual drug treatment. Moreover, a set of genes were identified whose expression pattern can be further investigated for identifying a good biomarker for potential anti-malarial hepatotoxicity. CONCLUSION: These observations clearly indicate AQ+SP combination therapy is hepatotoxic in experimental Swiss mice. Microarray results provide a considerable number of potential biomarkers of anti-malarial drug toxicity. These findings hence will be useful for future drug toxicity studies, albeit implications of this study in clinical conditions need to be monitored with cautions.


Subject(s)
Amodiaquine/adverse effects , Antimalarials/adverse effects , Gene Expression Profiling , Liver/drug effects , Pyrimethamine/adverse effects , Sulfadoxine/adverse effects , Amodiaquine/administration & dosage , Animals , Antimalarials/administration & dosage , Drug Combinations , Drug Therapy, Combination/methods , Histocytochemistry , Liver/pathology , Male , Mice , Microarray Analysis , Oxidative Stress , Pyrimethamine/administration & dosage , Sulfadoxine/administration & dosage
18.
Malar J ; 7: 13, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18194515

ABSTRACT

BACKGROUND: Susceptibility/resistance to Plasmodium falciparum malaria has been correlated with polymorphisms in more than 30 human genes with most association analyses having been carried out on patients from Africa and south-east Asia. The aim of this study was to examine the possible contribution of genetic variants in the TNF and FCGR2A genes in determining severity/resistance to P. falciparum malaria in Indian subjects. METHODS: Allelic frequency distribution in populations across India was first determined by typing genetic variants of the TNF enhancer and the FCGR2A G/A SNP in 1871 individuals from 55 populations. Genotyping was carried out by DNA sequencing, single base extension (SNaPshot), and DNA mass array (Sequenom). Plasma TNF was determined by ELISA. Comparison of datasets was carried out by Kruskal-Wallis and Mann-Whitney tests. Haplotypes and LD plots were generated by PHASE and Haploview, respectively. Odds ratio (OR) for risk assessment was calculated using EpiInfotrade mark version 3.4. RESULTS: A novel single nucleotide polymorphism (SNP) at position -76 was identified in the TNF enhancer along with other reported variants. Five TNF enhancer SNPs and the FCGR2A R131H (G/A) SNP were analyzed for association with severity of P. falciparum malaria in a malaria-endemic and a non-endemic region of India in a case-control study with ethnically-matched controls enrolled from both regions. TNF -1031C and -863A alleles as well as homozygotes for the TNF enhancer haplotype CACGG (-1031T>C, -863C>A, -857C>T, -308G>A, -238G>A) correlated with enhanced plasma TNF levels in both patients and controls. Significantly higher TNF levels were observed in patients with severe malaria. Minor alleles of -1031 and -863 SNPs were associated with increased susceptibility to severe malaria. The high-affinity IgG2 binding FcgammaRIIa AA (131H) genotype was significantly associated with protection from disease manifestation, with stronger association observed in the malaria non-endemic region. These results represent the first genetic analysis of the two immune regulatory molecules in the context of P. falciparum severity/resistance in the Indian population. CONCLUSION: Association of specific TNF and FCGR2A SNPs with cytokine levels and disease severity/resistance was indicated in patients from areas with differential disease endemicity. The data emphasizes the need for addressing the contribution of human genetic factors in malaria in the context of disease epidemiology and population genetic substructure within India.


Subject(s)
Antigens, CD/genetics , Genetic Predisposition to Disease , Malaria, Falciparum/genetics , Polymorphism, Single Nucleotide , Receptors, IgG/genetics , Tumor Necrosis Factor-alpha/genetics , Africa/ethnology , Asia, Southeastern/ethnology , Enzyme-Linked Immunosorbent Assay , Gene Frequency , Genotype , Haplotypes , Humans , India/epidemiology , Malaria, Falciparum/ethnology , Malaria, Falciparum/pathology , Odds Ratio , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...