Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(23): 30485-30495, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38815005

ABSTRACT

Two dimensional (2D) imine-based covalent organic framework (COF), 2D-COF, is a newly emerging molecular 2D polymer with potential applications in thin film electronics, sensing, and catalysis. It is considered an ideal candidate due to its robust 2D nature and precise tunability of the electronic and functional properties. Herein, we report a scalable facile synthesis of 2D imine-COF with control over film thickness (ranging from 100 nm to a few monolayers) and film dimension reaching up to 2 cm on a dielectric (glass) substrate. Highly crystalline 2D imine polymer films are formed by maintaining a quasi-equilibrium (very slow, ∼15 h) in Schiff base condensation reaction between p-phenylenediamine (PDA) and benzene-1,3,5-tricarboxaldehyde (TCA) molecules. Free-standing thin and ultrathin films of imine-COF are obtained using sonication exfoliation of 2D-COF polymer. Insights into the microstructure of thin/ultrathin imine-COF are obtained using scanning and transmission electron microscopy (SEM and TEM) and atomic force microscopy (AFM), which shows high crystallinity and 2D layered structure in both thin and ultrathin films. The chemical nature of the 2D polymer was established using X-ray photoelectron spectroscopy (XPS). Optical band gap measurements also reveal a semiconducting gap. This is further established by electronic structure calculation using density functional theory (DFT), which reveals a semiconductor-like band structure with strong dispersion in bands near conduction and valence band edges. The structural characteristics (layered morphology and microscopic structure) of 2D imine-COF show significant potential for its application in thin film device fabrication. In addition, the electronic structure shows strong dispersion in the frontier bands, making it a potential semiconducting material for charge carrier transportation in electronic devices.

2.
J Magn Reson ; 362: 107689, 2024 May.
Article in English | MEDLINE | ID: mdl-38677224

ABSTRACT

ß-Lactamases (EC 3.5.2.6) confer resistance against ß-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against ß-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative ß-lactamase activity, sulbactam binding (a ß-lactam analogue) in the low µM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known ß-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its ß-lactamase activity. Current study is the first report on ß-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for ß-lactamase activity.


Subject(s)
Chlamydomonas reinhardtii , beta-Lactamases , Chlamydomonas reinhardtii/enzymology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Binding Sites , Nuclear Magnetic Resonance, Biomolecular/methods , Sulbactam/chemistry , Sulbactam/pharmacology , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Amino Acid Sequence , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding
3.
Drug Chem Toxicol ; : 1-9, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38425309

ABSTRACT

Potential genotoxic impurities in medications are an increasing concern in the pharmaceutical industry and regulatory bodies because of the risk of human carcinogenesis. To prevent the emergence of these impurities, it is crucial to carefully examine not only the final product but also the intermediates and key starting material (KSM) used in drug synthesis. During the related substances analysis of KSM of Famotidine, an unknown impurity in the range of 0.5-1.0% was found prompting the need for isolation and characterization due to the possibility of its to infiltrate into the final product. In this study, the impurity was isolated and characterized as 5-(2-chloroethyl)-3,3-dimethyl-3,4-dihydro-2H-1,2,4,6-thiatriazine 1,1-dioxide using multiple instrumental analysis, uncovering a structural alert that raises concern. Considering the potential impact of impurity on human health, an in silico genotoxicity assessment was established using Derek and Sarah tool in accordance with ICH M7 guideline. Furthermore, molecular docking and molecular dynamics simulation were performed to evaluate the specific interaction of the impurity with DNA. The findings reveal consistent interaction of the impurity with the dG-rich region of the DNA duplex and binding at the minor groove. Both in silico prediction and molecular dynamic study confirmed the genotoxic character of the impurity. The newly discovered impurity in famotidine has not been reported previously, and there is currently no analytical method available for its identification and control. A highly sensitive HPLC-UV method was developed and validated in accordance with ICH requirements, enabling quantification of the impurity at trace level in famotidine ensuring its safe release.

4.
Inorg Chem ; 63(11): 4839-4854, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38433436

ABSTRACT

A series of Ru(II)-acetylide complexes (Ru1, Ru2, and Ru1m) with alkynyl-functionalized borondipyrromethene (BODIPY) conjugates were designed by varying the position of the linker that connects the BODIPY unit to the Ru(II) metal center through acetylide linkage at either the 2-(Ru1) and 2,6-(Ru2) or the meso-phenyl (Ru1m) position of the BODIPY scaffold. The Ru(II) organometallic complexes were characterized by various spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, CHN, and high-resolution mass spectrometry (HRMS) analyses. The Ru(II)-BODIPY conjugates exhibit fascinating electrochemical and photophysical properties. All BODIPY-Ru(II) complexes exhibit strong absorption (εmax = 29,000-72,000 M-1 cm-1) in the visible region (λmax = 502-709 nm). Fluorescence is almost quenched for Ru1 and Ru2, whereas Ru1m shows the residual fluorescence of the corresponding BODIPY core at 517 nm. The application of the BODIPY-Ru(II) dyads as nonporphyrin-based triplet photosensitizers was explored by a method involving the singlet oxygen (1O2)-mediated photo-oxidation of diphenylisobenzofuran. Effective π-conjugation between the BODIPY chromophore and Ru(II) center in the case of Ru1 and Ru2 was found to be necessary to improve intersystem crossing (ISC) and hence the 1O2-sensitizing ability. In addition, electrochemical studies indicate electronic interplay between the metal center and the redox-active BODIPY in the BODIPY-Ru(II) dyads.

5.
Biochem Biophys Res Commun ; 693: 149377, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38101000

ABSTRACT

In most of the eukaryotes and archaea, isopentenyl pyrophosphate (IPP) and dimethyl allyl pyrophosphate (DMAPP) essential building blocks of all isoprenoids synthesized in the mevalonate pathway. Here, the first enzyme of this pathway, acetoacetyl CoA thiolase (PFC_04095) from an archaea Pyrococcus furiosus is structurally characterized. The crystal structure of PFC_04095 is determined at 2.7 Å resolution, and the crystal structure reveals the absence of catalytic acid/base cysteine in its active site, which is uncommon in thiolases. In place of cysteine, His285 of HDAF motif performs both protonation and abstraction of proton during the reaction. The crystal structure shows that the distance between Cys83 and His335 is 5.4 Å. So, His335 could not abstract a proton from nucleophilic cysteine (Cys83), resulting in the loss of enzymatic activity of PFC_04095. MD simulations of the docked PFC_04095-acetyl CoA complex show substrate binding instability to the active site pocket. Here, we have reported that the stable binding of acetyl CoA to the PFC_04095 pocket requires the involvement of three protein complexes, i.e., thiolase (PFC_04095), DUF35 (PFC_04100), and HMGCS (PFC_04090).


Subject(s)
Acetyl-CoA C-Acetyltransferase , Pyrococcus furiosus , Acetyl-CoA C-Acetyltransferase/chemistry , Acetyl Coenzyme A/metabolism , Pyrococcus furiosus/metabolism , Cysteine/metabolism , Protons , Models, Molecular
6.
FEBS J ; 290(16): 3997-4022, 2023 08.
Article in English | MEDLINE | ID: mdl-37026388

ABSTRACT

Tuberculosis (TB) is one of the leading causes of human death caused by Mycobacterium tuberculosis (Mtb). Mtb can enter into a long-lasting persistence where it can utilize fatty acids as the carbon source. Hence, fatty acid metabolism pathway enzymes are considered promising and pertinent mycobacterial drug targets. FadA2 (thiolase) is one of the enzymes involved in Mtb's fatty acid metabolism pathway. FadA2 deletion construct (ΔL136-S150) was designed to produce soluble protein. The crystal structure of FadA2 (ΔL136-S150) at 2.9 Å resolution was solved and analysed for membrane-anchoring region. The four catalytic residues of FadA2 are Cys99, His341, His390 and Cys427, and they belong to four loops with characteristic sequence motifs, i.e., CxT, HEAF, GHP and CxA. FadA2 is the only thiolase of Mtb which belongs to the CHH category containing the HEAF motif. Analysing the substrate-binding channel, it has been suggested that FadA2 is involved in the ß-oxidation pathway, i.e., the degradative pathway, as the long-chain fatty acid can be accommodated in the channel. The catalysed reaction is favoured by the presence of two oxyanion holes, i.e., OAH1 and OAH2. OAH1 formation is unique in FadA2, formed by the NE2 of His390 present in the GHP motif and NE2 of His341 present in the HEAF motif, whereas OAH2 formation is similar to CNH category thiolase. Sequence and structural comparison with the human trifunctional enzyme (HsTFE-ß) suggests the membrane-anchoring region in FadA2. Molecular dynamics simulations of FadA2 with a membrane containing POPE lipid were conducted to understand the role of a long insertion sequence of FadA2 in membrane anchoring.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Substrate Specificity , Acetyl-CoA C-Acetyltransferase/chemistry , Acetyl-CoA C-Acetyltransferase/metabolism
7.
Small ; 19(12): e2205575, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36593530

ABSTRACT

Tailoring the physicochemical properties of graphene through functionalization remains a major interest for next-generation technological applications. However, defect formation due to functionalization greatly endangers the intrinsic properties of graphene, which remains a serious concern. Despite numerous attempts to address this issue, a comprehensive analysis has not been conducted. This work reports a two-step fluorination process to stabilize the fluorinated graphene and obtain control over the fluorination-induced defects in graphene layers. The structural, electronic and isotope-mass-sensitive spectroscopic characterization unveils several not-yet-resolved facts, such as fluorination sites and CF bond stability in partially-fluorinated graphene (F-SLG). The stability of fluorine has been correlated to fluorine co-shared between two graphene layers in fluorinated-bilayer-graphene (F-BLG). The desorption energy of co-shared fluorine is an order of magnitude higher than the CF bond energy in F-SLG due to the electrostatic interaction and the inhibition of defluorination in the F-BLG. Additionally, F-BLG exhibits enhanced light-matter interaction, which has been utilized to design a proof-of-concept field-effect phototransistor that produces high photocurrent response at a time <200 µs. Thus, the study paves a new avenue for the in-depth understanding and practical utilization of fluorinated graphenic carbon.

8.
ACS Chem Biol ; 17(11): 3238-3250, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36318733

ABSTRACT

Primase-DNA polymerase (PrimPol) is involved in reinitiating DNA synthesis at stalled replication forks. PrimPol also possesses DNA translesion (TLS) activity and bypasses several endogenous nonbulky DNA lesions in vitro. Little is known about the TLS activity of PrimPol across bulky carcinogenic adducts. We analyzed the DNA polymerase activity of human PrimPol on DNA templates with seven N2-dG lesions of different steric bulkiness. In the presence of Mg2+ ions, bulky N2-isobutyl-dG, N2-benzyl-dG, N2-methyl(1-naphthyl)-dG, N2-methyl(9-anthracenyl)-dG, N2-methyl(1-pyrenyl)-dG, and N2-methyl(1,3-dimethoxyanthraquinone)-dG adducts fully blocked PrimPol activity. At the same time, PrimPol incorporated complementary deoxycytidine monophosphate (dCMP) opposite N2-ethyl-dG with moderate efficiency but did not extend DNA beyond the lesion. We also demonstrated that mutation of the Arg288 residue abrogated dCMP incorporation opposite the lesion in the presence of Mn2+ ions. When Mn2+ replaced Mg2+, PrimPol carried out DNA synthesis on all DNA templates with N2-dG adducts in standing start reactions with low efficiency and accuracy, possibly utilizing a lesion "skipping" mechanism. The TLS activity of PrimPol opposite N2-ethyl-dG but not bulkier adducts was stimulated by accessory proteins, polymerase delta-interacting protein 2 (PolDIP2), and replication protein A (RPA). Molecular dynamics studies demonstrated the absence of stable interactions with deoxycytidine triphosphate (dCTP), large reactions, and C1'-C1' distances for the N2-isobutyl-dG and N2-benzyl-dG PrimPol complexes, suggesting that the size of the adduct is a limiting factor for efficient TLS across minor groove adducts by PrimPol.


Subject(s)
DNA Damage , Deoxycytidine Monophosphate , Humans , Deoxyguanosine/chemistry , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , DNA Adducts , Nuclear Proteins/metabolism , DNA Primase/metabolism , Multifunctional Enzymes/metabolism
9.
Membranes (Basel) ; 12(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36295678

ABSTRACT

Mixed-matrix membranes (MMMs) possess the unique properties and inherent characteristics of their component polymer and inorganic fillers, or other possible types of additives. However, the successful fabrication of compact and defect-free MMMs with a homogeneous filler distribution poses a major challenge, due to poor filler/polymer compatibility. In this study, we use two-dimensional multi-layered Ti3C2Tx MXene nanofillers to improve the compatibility and CO2/CH4 separation performance of cellulose triacetate (CTA)-based MMMs. CTA-based MMMs with TiO2-based 1D (nanotubes) and 0D (nanofillers) additives were also fabricated and tested for comparison. The high thermal stability, compact homogeneous structure, and stable long-term CO2/CH4 separation performance of the CTA-2D samples suggest the potential application of the membrane in bio/natural gas separation. The best results were obtained for the CTA-2D sample with a loading of 3 wt.%, which exhibited a 5-fold increase in CO2 permeability and 2-fold increase in CO2/CH4 selectivity, compared with the pristine CTA membrane, approaching the state-of-the-art Robeson 2008 upper bound. The dimensional (shape) effect on separation performance was determined as 2D > 1D > 0D. The use of lamellar stacked MXene with abundant surface-terminating groups not only prevents the aggregation of particles but also enhances the CO2 adsorption properties and provides additional transport channels, resulting in improved CO2 permeability and CO2/CH4 selectivity.

10.
Plants (Basel) ; 11(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406922

ABSTRACT

Yield limitation and widespread sulphur (S) deficiency in pearl-millet-nurturing dryland soils has emerged as a serious threat to crop productivity and quality. Among diverse pathways to tackle moisture and nutrient stress in rainfed ecologies, conservation agriculture (CA) and foliar nutrition have the greatest potential due to their economic and environmentally friendly nature. Therefore, to understand ammonium thiosulphate (ATS)-mediated foliar S nutrition effects on yield, protein content, mineral biofortification, and sulphur economy of rainfed pearl millet under diverse crop establishment systems, a field study was undertaken. The results highlighted that pearl millet grain and protein yield was significantly higher under no-tillage +3 t/ha crop residue mulching (NTCRM) as compared to no-tillage without mulch (NoTill) and conventional tillage (ConvTill), whereas the stover yield under NTCRM and ConvTill remained at par. Likewise, grain and stover yield in foliar S application using ATS 10 mL/L_twice was 19.5% and 13.2% greater over no S application. The sulphur management strategy of foliar-applied ATS 10 mL/L_twice resulted in significant improvement in grain protein content, protein yield, micronutrient fortification, and net returns (₹ 54.6 × 1000) over the control. Overall, ATS-mediated foliar S nutrition can be an alternate pathway to S management in pearl millet for yield enhancement, micronutrient biofortification and grain protein content increase under ConvTill, as well as under the new NTCRM systems.

11.
Acta Crystallogr C Struct Chem ; 77(Pt 12): 757-763, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34864717

ABSTRACT

The crystal structure of the heterocyclic compound 2-(4-methoxyphenyl)-7-phenylpyrazolo[1,5-c]pyrimidine, C19H15N3O, has been determined and its self-assembly on the surface of graphite has been examined using atomic force microscopy (AFM). The title compound crystallized in the monoclinic space group P21/c, with two independent molecules in the asymmetric unit. The packing of the L-shaped molecules in the crystal is governed by arene interactions, in the absence of any conventional hydrogen-bonding interactions. The packing arrangement reveals four types of dimeric motifs stabilized by π-π and C-H...π interactions. At low coverage, molecules assemble into long needle-like islands on the graphite surface. High-resolution AFM images reveal that the molecules interact through weak noncovalent interactions between the aromatic H atoms and the methoxy O atoms.

12.
ACS Appl Mater Interfaces ; 12(45): 51122-51132, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33118800

ABSTRACT

Two-dimensional (2D) surface-confined metal-organic networks (SMONs) are metal-doped self-assembled monolayers of molecules on solid surfaces. We report the formation of uniform large-area solution-processed semiconducting SMONs of Pd and Zn with mellitic acid (MA) on a highly oriented pyrolytic graphite (HOPG) surface under ambient conditions. The microscopic structure is determined using scanning tunneling microscopy (STM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Using tunneling spectroscopy, we observed a reduction in the band gap of ≈900 and ≈300 meV for MA-Pd and MA-Zn SMONs, respectively, compared to the pure MA assembly. Concomitant density functional theory (DFT) calculations reveal that the coordination geometry and microscopic arrangement give rise to the observed reduction in the band gap. The dispersion of the frontier bands and their delocalization due to strong electronic coupling (between MA and metal) suggest that the MA-Pd SMON could potentially be a 2D electronic material.

13.
Phys Chem Chem Phys ; 22(37): 21360-21368, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32940303

ABSTRACT

Two-dimensional covalent organic frameworks (2D-COFs) belong to a new class of molecular materials that have attracted huge attention in recent years due to their analogous nature to graphene. In this work, we present a systematic study of the electronic structure, carrier mobility and work function of imine based 2D-COFs. We identify these 2D-COFs as a new class of semiconducting materials with tunable electronic/optoelectronic properties and significant mobility. The results show that by rationally doping 2D-COFs at the molecular level, it is possible to control their structural and optoelectronic responses. Cohesive energy calculations revealed that all the studied 2D-COFs are thermodynamically stable. Also, the calculated binding energy of 2D-COFs on HOPG was found to be less than 1 eV, which indicates that the COFs do not interact strongly with HOPG, and it will not affect their electronic properties. Additionally, we have synthesized a 2,4,6-pyrimidinetriamine based 2D-COF and experimentally measured its band gap using scanning tunnelling spectroscopy. The experimentally measured band gap is found to be in good agreement with theoretical results.

14.
Phys Chem Chem Phys ; 22(28): 16013-16022, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32632422

ABSTRACT

Lipoxygenases are non-heme iron containing enzymes that catalyze oxygenation of poly-unsaturated fatty acids in different animal and plant species with extremely high regio- and stereospecificity. Nature employs 8-lipoxygenase to produce 8R-hydroperoxide from the oxygenation of arachidonic acid. A single-point L434F mutation of 8-lipoxygenase alters the regio- and stereospecificity of the final products, with a product ratio of 66 : 34 for 8R- and 12S-hydroperoxide, respectively. A molecular level explanation of this flipped regiospecificity is presented in this work on the basis of molecular dynamics simulations and transition network analysis of oxygen migration in the protein matrix. Phe434 is shown to exist in two conformations, the so-called open and closed conformations. In the closed conformation, the phenyl group of Phe434 shields the C8 site of the substrate, thereby preventing access of the oxygen molecule to this site, which leads to a quenching of the 8R-product. On the other hand, both closed and open conformations of Phe434 allow the oxygen molecule to approach the pro-S face of the C12 site of the substrate, which enhances the propensity of the 12S-hydroperoxide.


Subject(s)
Arachidonate Lipoxygenases/genetics , Animals , Arachidonate Lipoxygenases/chemistry , Arachidonate Lipoxygenases/metabolism , Crystallography, X-Ray , Molecular Dynamics Simulation , Mutation , Protein Conformation
15.
RSC Adv ; 10(47): 28422-28430, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-35519090

ABSTRACT

The detection of fluoride ions in a competitive environment often poses several challenges. In this work, we have designed and synthesized a coumarin functionalized fluorescein dyad (R3) which represents an ideal through bond energy transfer (TBET) fluorophore with the coumarin unit as donor and fluorescein unit as acceptor. The bichromophoric dyad demonstrates the detection of fluoride ions in the parts per billion (ppb) concentration level (22.8 ppb) with high selectivity via a TBET emission signal at 548 nm with a diagnostic bright yellow colour fluorescence output. Based on UV-visible, fluorescence, 1H NMR and DFT studies, it is shown that the fluoride ion induces the opening of the spirolactam ring of the fluorescein moiety and provides a π-conjugation link between the donor and acceptor units enabling a TBET phenomenon with a larger pseudo-Stokes shift of 172 nm. To the best of our knowledge, this is the first report where the fluoride ion is detected via a TBET signal between the coumarin and fluorescein units in a bichromophoric dyad.

16.
J Phys Chem B ; 123(50): 10605-10621, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31775504

ABSTRACT

Lipoxygenases (lox's) are a group of non-heme iron containing enzymes that catalyze oxygenation of polyunsaturated fatty acids with precise regio- and stereoselectivities. The origin of regio- and stereospecific catalysis by 8-lox is explored in its wild-type (wt) form and in three mutants (Arg185Ala, Ala592Met, and Ala623His). The catalytic action of this enzyme progresses in two steps, namely, hydrogen abstraction from one double allylic carbon atom of substrate followed by oxygen insertion at the resulting prochiral carbon radical of the substrate. It is shown that the positional specificity of the hydrogen abstraction is a result of conformational dynamics of the bound substrate. While the C10 atom of the substrate is found to be the most probable site of hydrogen abstraction in the wt-lox, hydrogen abstraction from C13 is more favorable in the mutants. The present study discovers the presence of an interconnected network of a three-channel migration pathway operating in the protein matrix for efficient oxygen transport. Each migration channel is bestowed with a pocket at the peripheral region of protein as an oxygen access site, which transfers the oxygen to the active site through a well-connected migration path on a time scale of a few hundred picoseconds. By a careful geometric analysis of the oxygen pockets near the substrate binding cleft, the present study identifies the launching sites for oxygenation at the prochiral carbon centers C8, C11, C12, and C15 and the stereochemistry (R/S) of the corresponding products. It is found that the dominating 8R product in the wt-lox is due to the presence of the aromatic ring pair of Tyr181 and Phe173 acting as a gatekeeper for efficient delivery of oxygen at the pro-R face of C8. The change in the stereochemistry of the products in mutants is explained in terms of dynamic interactions between substrate and the surrounding residues.


Subject(s)
Arachidonate Lipoxygenases/metabolism , Biocatalysis , Molecular Dynamics Simulation , Arachidonate Lipoxygenases/chemistry , Arachidonate Lipoxygenases/genetics , Mutation , Protein Conformation , Stereoisomerism , Substrate Specificity
17.
Chem Asian J ; 14(24): 4645-4650, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31310046

ABSTRACT

Imine COF (covalent organic framework) based on the Schiff base reaction between p-phenylenediamine (PDA) and benzene-1,3,5-tricarboxaldehyde (TCA) was prepared on the HOPG-air (air=humid N2 ) interface and characterized using different probe microscopies. The role of the molar ratio of TCA and PDA has been explored, and smooth domains of imine COF up to a few µm are formed for a high TCA ratio (>2) compared to PDA. It is also observed that the microscopic roughness of imine COF is strongly influenced by the presence of water (in the reaction chamber) during the Schiff base reaction. The electronic property of imine COF obtained by tunneling spectroscopy and dispersion corrected density functional theory (DFT) calculation are comparable and show semiconducting nature with a band gap of ≈1.8 eV. Further, we show that the frontier orbitals are delocalized entirely over the framework of imine COF. The calculated cohesive energy shows that the stability of imine COF is comparable to that of graphene.

18.
Mol Neurobiol ; 56(9): 6551-6565, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30868446

ABSTRACT

The amyloid cascade hypothesis dealing with the senile plaques is until date thought to be one of the causative pathways leading to the pathophysiology of Alzheimer's disease (AD). Though many aggregation inhibitors of misfolded amyloid beta (Aß42) peptide have failed in clinical trials, there are some positive aspects of the designed therapeutic peptides for diseases involving proteinaceous aggregation. Here, we evaluated a smart design of side chain tripeptide (Leu-Val-Phe)-based polymeric inhibitor addressing the fundamental hydrophobic amino acid stretch "Lys-Leu-Val-Phe-Phe-Ala" (KLVFFA) of the Aß42 peptide. The in vitro analyses performed through the thioflavin T (ThT) fluorescence assay, infrared spectroscopy, isothermal calorimetry, cytotoxicity experiments, and so on evinced a promising path towards the development of new age AD therapeutics targeting the inhibition of misfolded Aß42 peptide fibrillization. The in silico simulations done contoured the mechanism of drug action of the present block copolymer as the competitive inhibition of aggregate-prone hydrophobic stretch of Aß42. Graphical abstract The production of misfolded Aß42 peptide from amyloid precursor protein initiates amyloidosis pathway which ends with the deposition of fibrils via the oligomerization and aggregation of Aß42 monomers. The side chain tripeptide-based PEGylated polymer targets these Aß42 monomers and oligomers inhibiting their aggregation. This block copolymer also binds and helps degrading the preformed fibrils of Aß42.


Subject(s)
Alzheimer Disease/drug therapy , Polyethylene Glycols/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/ultrastructure , Cell Death , Cell Line, Tumor , Cell Survival , Humans , Ligands , Molecular Dynamics Simulation , Polyethylene Glycols/chemical synthesis , Static Electricity
19.
J Phys Chem B ; 123(10): 2280-2290, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30775921

ABSTRACT

In this contribution, the structural and dynamic changes occurring to papain in ethanol-water binary solvent mixtures have been investigated and compared with its denatured state. Steady-state fluorescence, solvation dynamics, time-resolved rotational anisotropy, circular dichroism (CD), and single molecular-level fluorescence correlation spectroscopic (FCS) studies were performed for this purpose. In ethanol-water mixtures with XEtOH = 0.6, N-(7-dimethylamino-4-methylcoumarin-3-yl)iodoacetamide (DACIA)-tagged papain was found to undergo a blue shift of 12 nm, while in the presence of 5 M GnHCl, a red shift of 5 nm was observed. Solvation dynamics of the system was also found to be different in the presence of these external agents. In ethanol-water mixtures, the average solvation time was found to increase almost 2-fold as compared to that in water, while in the presence of GnHCl, only a marginal increase could be observed. These changes of DACIA-tagged papain in ethanol-water mixtures are attributed to the aggregation of the protein in the presence of ethanol. The residual anisotropy was found to increase 14-fold, and the rotational time component corresponding to the rotation of the probe molecule was found to increase by 4-fold in the ethanol-water mixture which also gives a notion of the papain aggregation. Atomic force microscopy (AFM) confirms this aggregate formation, which is also quantified by the FCS study. The hydrodynamic radius of the protein aggregates in ethanol-water mixtures was calculated to be ∼155 Å as compared to the corresponding value of 18.4 Å in the case of native monomer papain. Also, it confirmed that the aggregate formation takes place even in the nanomolar concentration of papain. Analysis of circular dichroism spectra of papain showed that an increase in the ß-sheet content of papain at the expense of α-helix and the random coil with an increase of the ethanol mole fraction may be responsible for this aggregation process.


Subject(s)
Ethanol/chemistry , Papain/chemistry , Protein Aggregates , Solvents/chemistry , Anisotropy , Circular Dichroism , Microscopy, Atomic Force , Molecular Dynamics Simulation , Spectrometry, Fluorescence , Thermodynamics
20.
Inorg Chem ; 58(2): 1155-1166, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30614701

ABSTRACT

A series of heterobimetallic wire-like organometallic complexes [( tpy-C6H4-R)(PPh3)2Ru-C≡C-Fc]+ ( tpy-C6H4-R = 4'-(aryl)-2,2':6',2''-terpyridyl, Fc = [(η5-Cp)2Fe], R = -H, -Me, -F, -NMe2 in complexes 5-8, respectively) featuring ferrocenyl and 4'-(aryl)-2,2':6',2''-terpyridyl ruthenium(II) complexes as redox active metal termini, have been synthesized. Various spectroscopic tools, such as multinuclear NMR, IR spectra, HRMS, CHN analyses, and single crystal X-ray crystallography have been utilized to characterize the heterobimetallic complexes. The electrochemical and UV-vis-NIR spectroscopic studies have been investigated to evaluate the electronic delocalization across the molecular backbones of the Ru(II)-Fe(II) heterobinuclear organometallic dyads. Electrochemical studies reveal two well-separated reversible redox waves as a result of successive oxidation of the ferrocenyl and Ru(II) redox centers. The spin density distribution analyses reveal that the initial oxidation process is associated with the Fe(II)/Fe(III) couple followed by one electron oxidation of the ruthenium(II) center. The high Kc value (0.11-1.73 × 1012) and intense NIR absorption, with molar absorption coefficient (in the order of 103 M-1 cm-1) for the RuIIFeIII mixed-valence species, signify strong electronic communication between the two metal termini. The electronic coupling constant ( Hab) has been estimated to be 492 and 444 cm-1 for the structurally characterized complexes 6 and 7, respectively. The redox and NIR absorption features indicate that the mixed-valence system of the heterobinuclear dyads belongs to a Robin and Day "class II" system.

SELECTION OF CITATIONS
SEARCH DETAIL
...