Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
J Allergy Clin Immunol ; 152(4): 972-983, 2023 10.
Article in English | MEDLINE | ID: mdl-37343845

ABSTRACT

BACKGROUND: Gain-of-function variants of JAK1 drive a rare immune dysregulation syndrome associated with atopic dermatitis, allergy, and eosinophilia. OBJECTIVES: This study sought to describe the clinical and immunological characteristics associated with a new gain-of-function variant of JAK1 and report the therapeutic efficacy of Janus kinase (JAK) inhibition. METHODS: The investigators identified a family affected by JAK1-associated autoinflammatory disease and performed clinical assessment and immunological monitoring on 9 patients. JAK1 signaling was studied by flow and mass cytometry in patients' cells at basal state or after immune stimulation. A molecular disease signature in the blood was studied at the transcriptomic level. Patients were treated with 1 of 2 JAK inhibitors: either baricitinib or upadacitinib. Clinical, cellular, and molecular response were evaluated over a 2-year period. RESULTS: Affected individuals displayed a syndromic disease with prominent allergy including atopic dermatitis, ichthyosis, arthralgia, chronic diarrhea, disseminated calcifying fibrous tumors, and elevated whole blood histamine levels. A variant of JAK1 localized in the pseudokinase domain was identified in all 9 affected, tested patients. Hyper-phosphorylation of STAT3 was found in 5 of 6 patients tested. Treatment of patients' cells with baricitinib controlled most of the atypical hyper-phosphorylation of STAT3. Administration of baricitinib to patients led to rapid improvement of the disease in all adults and was associated with reduction of systemic inflammation. CONCLUSIONS: Patients with this new JAK1 gain-of-function pathogenic variant displayed very high levels of blood histamine and showed a variable combination of atopy with articular and gastrointestinal manifestations as well as calcifying fibrous tumors. The disease, which appears to be linked to STAT3 hyperactivation, was well controlled under treatment by JAK inhibitors in adult patients.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Neoplasms , Adult , Humans , Janus Kinase Inhibitors/therapeutic use , Dermatitis, Atopic/drug therapy , Histamine , Neoplasms/drug therapy , Janus Kinase 1/genetics
3.
Biochimie ; 174: 159-170, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32335229

ABSTRACT

TMEM165 is a Golgi protein whose deficiency causes a Congenital Disorder of Glycosylation (CDG). We have demonstrated that Mn2+ supplementation could suppress the glycosylation defects observed in TMEM165-deficient cells and that TMEM165 was a Mn2+-sensitive protein. In the Golgi, the other transmembrane protein capable to regulate Mn2+/Ca2+ homeostasis is SPCA1, encoded by the ATP2C1 gene. A loss of one copy of the ATP2C1 gene leads to Hailey-Hailey Disease (HHD), an acantholytic skin disorder in Humans. Our latest results suggest an unexpected functional link between SPCA1 and TMEM165. In order to clarify this link in case of partial SPCA1 deficiency, HHD fibroblasts were used to assess TMEM165 expression, subcellular localization and Mn2+-induced degradation. No differences were observed regarding TMEM165 expression and localization in HHD patients' fibroblasts compared to control fibroblasts. Nevertheless, we demonstrated both for fibroblasts and keratinocytes that TMEM165 expression is more sensitive to MnCl2 exposure in HHD cells than in control cells. We linked, using ICP-MS and GPP130 as a Golgi Mn2+ sensor, this higher Mn2+-induced sensitivity to a cytosolic Mn accumulation in MnCl2 supplemented HHD fibroblasts. Altogether, these results link the function of SPCA1 to the stability of TMEM165 in a pathological context of Hailey-Hailey disease.


Subject(s)
Antiporters/metabolism , Calcium-Transporting ATPases/metabolism , Cation Transport Proteins/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Pemphigus, Benign Familial/metabolism , Cell Line , Fibroblasts/pathology , Humans , Keratinocytes/pathology , Manganese/metabolism
6.
JCI Insight ; 4(11)2019 06 06.
Article in English | MEDLINE | ID: mdl-31167965

ABSTRACT

BACKGROUNDRecessive dystrophic epidermolysis bullosa (RDEB) is a severe form of skin fragility disorder due to mutations in COL7A1 encoding basement membrane type VII collagen (C7), the main constituent of anchoring fibrils (AFs) in skin. We developed a self-inactivating lentiviral platform encoding a codon-optimized COL7A1 cDNA under the control of a human phosphoglycerate kinase promoter for phase I evaluation.METHODSIn this single-center, open-label phase I trial, 4 adults with RDEB each received 3 intradermal injections (~1 × 106 cells/cm2 of intact skin) of COL7A1-modified autologous fibroblasts and were followed up for 12 months. The primary outcome was safety, including autoimmune reactions against recombinant C7. Secondary outcomes included C7 expression, AF morphology, and presence of transgene in the injected skin.RESULTSGene-modified fibroblasts were well tolerated, without serious adverse reactions or autoimmune reactions against recombinant C7. Regarding efficacy, there was a significant (P < 0.05) 1.26-fold to 26.10-fold increase in C7 mean fluorescence intensity in the injected skin compared with noninjected skin in 3 of 4 subjects, with a sustained increase up to 12 months in 2 of 4 subjects. The presence of transgene (codon-optimized COL7A1 cDNA) was demonstrated in the injected skin at month 12 in 1 subject, but no new mature AFs were detected.CONCLUSIONTo our knowledge, this is the first human study demonstrating safety and potential efficacy of lentiviral fibroblast gene therapy with the presence of COL7A1 transgene and subsequent C7 restoration in vivo in treated skin at 1 year after gene therapy. These data provide a rationale for phase II studies for further clinical evaluation.TRIAL REGISTRATIONClincalTrials.gov NCT02493816.FUNDINGCure EB, Dystrophic Epidermolysis Bullosa Research Association (UK), UK NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, and Fondation René Touraine Short-Exchange Award.


Subject(s)
Epidermolysis Bullosa Dystrophica/therapy , Fibroblasts , Genetic Therapy , Lentivirus/genetics , Adult , Collagen Type VII/genetics , Female , Fibroblasts/metabolism , Fibroblasts/transplantation , Genetic Therapy/adverse effects , Genetic Therapy/methods , Humans , Male , Middle Aged , Treatment Outcome
7.
J Am Acad Dermatol ; 73(5 Suppl 1): S66-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26470620

ABSTRACT

Pyoderma gangrenosum, severe acne, and suppurative hidradenitis (PASH) syndrome can prove refractory to treatment and is characterized by relapses and recurrences. The combination of antibiotic therapy and surgery can produce success in the management of the syndrome. Acute treatment is required, but maintenance therapy is also necessary to prevent disease relapse. The response to antibiotic therapy is hypothesis generating, raising the issue of a modified host response. To date, anecdotal reports support the use of surgery and medical therapy, but controlled investigations with extended follow-up are necessary to substantiate preliminary data observed with individual cases.


Subject(s)
Acne Vulgaris/drug therapy , Anti-Bacterial Agents/therapeutic use , Drug Delivery Systems/methods , Hidradenitis Suppurativa/drug therapy , Pyoderma Gangrenosum/drug therapy , Acne Vulgaris/complications , Acne Vulgaris/diagnosis , Acne Vulgaris/surgery , Adult , Combined Modality Therapy , Female , Follow-Up Studies , Hidradenitis Suppurativa/complications , Hidradenitis Suppurativa/diagnosis , Hidradenitis Suppurativa/surgery , Humans , Male , Microbiota/drug effects , Pyoderma Gangrenosum/complications , Pyoderma Gangrenosum/diagnosis , Pyoderma Gangrenosum/surgery , Sampling Studies , Severity of Illness Index , Skin/drug effects , Skin/microbiology , Syndrome , Treatment Outcome , Young Adult
9.
Am J Hum Genet ; 88(6): 718-728, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21596366

ABSTRACT

Moyamoya is a cerebrovascular angiopathy characterized by a progressive stenosis of the terminal part of the intracranial carotid arteries and the compensatory development of abnormal and fragile collateral vessels, also called moyamoya vessels, leading to ischemic and hemorrhagic stroke. Moyamoya angiopathy can either be the sole manifestation of the disease (moyamoya disease) or be associated with various conditions, including neurofibromatosis, Down syndrome, TAAD (autosomal-dominant thoracic aortic aneurysm), and radiotherapy of head tumors (moyamoya syndromes). Its prevalence is ten times higher in Japan than in Europe, and an estimated 6%-12% of moyamoya disease is familial in Japan. The pathophysiological mechanisms of this condition remain obscure. Here, we report on three unrelated families affected with an X-linked moyamoya syndrome characterized by the association of a moyamoya angiopathy, short stature, and a stereotyped facial dysmorphism. Other symptoms include an hypergonadotropic hypogonadism, hypertension, dilated cardiomyopathy, premature coronary heart disease, premature hair graying, and early bilateral acquired cataract. We show that this syndromic moyamoya is caused by Xq28 deletions removing MTCP1/MTCP1NB and BRCC3. We also show that brcc3 morphant zebrafish display angiogenesis defects that are rescued by endothelium-specific expression of brcc3. Altogether, these data strongly suggest that BRCC3, a deubiquitinating enzyme that is part of the cellular BRCA1 and BRISC complexes, is an important player in angiogenesis and that BRCC3 loss-of-function mutations are associated with moyamoya angiopathy.


Subject(s)
Blood Vessels/abnormalities , Chromosomes, Human, X/genetics , Genetic Diseases, X-Linked/genetics , Membrane Proteins/genetics , Moyamoya Disease/genetics , Neovascularization, Physiologic/genetics , Animals , Base Sequence , Brain/blood supply , Deubiquitinating Enzymes , Face/abnormalities , Female , Gene Deletion , Gene Knockdown Techniques , Humans , Male , Molecular Sequence Data , Moyamoya Disease/diagnosis , Moyamoya Disease/pathology , Pedigree , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins/genetics , Zebrafish/abnormalities , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...