Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Plant Res ; 127(6): 793-802, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25246072

ABSTRACT

The present study was performed to investigate the possible role of carbon (C) and nitrogen (N) metabolism in adaptation of Indian mustard (Brassica juncea L.) growing under ambient (370 ± 15 ppm) and elevated CO2 (700 ± 15 ppm), and jointly in elevated CO2 and temperature (30/22 °C for day/night). The key enzymes responsible for C-N metabolism were studied in different samples of Brassica juncea L. collected from ambient (AMB), elevated (ELE) and ELExT growth conditions. Total percent amount of C and N in leaves were particularly estimated to establish a clear understanding of aforesaid metabolism in plant adaptation. Furthermore, key morphological and physiological parameters such as plant height, leaf area index, dry biomass, net photosynthetic rate, stomatal conductance, transpiration, total protein and chlorophyll contents were also studied in relation to C/N metabolism. The results indicated that the C-metabolizing enzymes, such as (ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, NAD-malic enzyme, NADP-malic enzyme and citrate synthase) and the N-metabolizing enzymes, such as (aspartate amino transferase, glutamine synthetase, nitrate reductase and nitrite reductase) showed significantly (P < 0.05) higher activities along with the aforesaid physiological and biochemical parameters in order of ELE > ELExT > AMB growth conditions. This is also evident by significant (P < 0.05) increase in percent contents of C and N in leaves as per said order. These findings suggested that improved performance of C-N metabolism could be a possible approach for CO2 assimilation and adaptation in Brassica juncea L. against elevated CO2 and temperature prevailing in climate change scenarios.


Subject(s)
Carbon Dioxide/metabolism , Carbon/metabolism , Climate Change , Mustard Plant/growth & development , Nitrogen/metabolism , Plant Proteins/genetics , Adaptation, Physiological , Mustard Plant/enzymology , Plant Proteins/metabolism , Temperature
2.
Cell Biochem Biophys ; 67(2): 219-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975597

ABSTRACT

Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.


Subject(s)
Blood Vessels/physiopathology , Neovascularization, Pathologic , Respiratory Tract Diseases/physiopathology , Blood Vessels/pathology , Chronic Disease , Endothelial Cells/pathology , Humans , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology , Respiratory Tract Diseases/pathology
3.
J Hazard Mater ; 258-259: 35-41, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23692681

ABSTRACT

We have evaluated the effect of an integrated (nano-bio) technique involving the use of stabilized Pd/Fe(0) bimetallic nanoparticles (CMC-Pd/nFe(0)) and a Sphingomonas sp. strain NM05, on the degradation of γ-HCH in soil. Factors affecting degradation such as pH, incubation temperature and γ-HCH initial concentration were also studied. The results revealed that γ-HCH degradation efficiency is ~ 1.7-2.1 times greater in integrated system as compared to system containing either NM05 or CMC-Pd/nFe(0) alone. The integration showed synergistic effect on γ-HCH degradation. Further, cell growth studies indicated that NM05 gets well acclimatized to nanoparticles, showing potential growth in the presence of CMC-Pd/nFe(0) with respect to control system. This study signifies the potential efficacy of integrated technique to become an effective alternative remedial tool for γ-HCH contaminated soil. Further research in this direction could lead to the development of effective remediation strategies for other isomers of HCH and other chlorinated pesticides as well.


Subject(s)
Hexachlorocyclohexane/metabolism , Pesticides/metabolism , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Soil/chemistry , Biodegradation, Environmental , Hexachlorocyclohexane/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Lead/chemistry , Metal Nanoparticles/chemistry , Pesticides/chemistry , Sphingomonas/metabolism , Temperature
4.
J Hazard Mater ; 237-238: 355-64, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-22981285

ABSTRACT

This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe(0) bimetallic nanoparticles (CMC-Pd/nFe(0)). GC-MS analysis of γ-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ-HCH has been proposed. Batch studies showed complete γ-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe(0) within 6h of incubation. The surface area normalized rate constant (k(SA)) was found to be 7.6 × 10(-2) L min(-1)m(-2). CMC-Pd/nFe(0) displayed ≈ 7-fold greater efficiency for γ-HCH degradation in comparison to Fe(0) nanoparticles (nFe(0)), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe(0) loading and reaction temperature facilitates γ-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that γ-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of γ-HCH contaminated soil using CMC-Pd/nFe(0) has been discussed.


Subject(s)
Ferric Compounds/chemistry , Hexachlorocyclohexane/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Soil Pollutants/chemistry , Adsorption , Carboxymethylcellulose Sodium/chemistry , Environmental Restoration and Remediation/methods , Hydrogen-Ion Concentration , Temperature
5.
Bull Environ Contam Toxicol ; 88(2): 210-4, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21996721

ABSTRACT

The illegal disposal of tannery wastes at Rania, Kanpur has resulted in accumulation of hexavalent chromium [Cr(VI)], a toxic heavy metal in soil posing risk to human health and environment. 27 soil samples were collected at various depths from Rania for the assessment of Cr(VI) level in soil. Out of 27 samples, five samples had shown significant level of Cr(VI) with an average concentration of 15.84 mg Kg(-1). Varied doses of nanoscale zero-valent iron (nZVI) were applied on Cr(VI) containing soil samples for remediation of Cr(VI). Results showed that 0.10 g L(-1) nZVI completely reduces Cr(VI) within 120 min following pseudo first order kinetics. Further, to test the efficacy of nZVI in field, soil windrow experiments were performed at the contaminated site. nZVI showed significant Cr(VI) reduction at field also, indicating it an effective tool for managing sites contaminated with Cr(VI).


Subject(s)
Chromium/chemistry , Environmental Restoration and Remediation/methods , Iron/chemistry , Nanostructures/chemistry , Soil Pollutants/chemistry , Tanning , Chromium/analysis , Soil Pollutants/analysis
6.
Environ Monit Assess ; 184(6): 3643-51, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21769560

ABSTRACT

Batch experiments were conducted on ground water samples collected from a site contaminated with Cr(VI) to evaluate the redox potential of zero-valent iron (Fe(0)) nanoparticles for remediation of Cr(VI)-contaminated ground water. For this, various samples of contaminated ground water were allowed to react with various loadings of Fe(0) nanoparticles for a reaction period of 60 min. Data showed 100% reduction of Cr(VI) in all the contaminated ground water samples after treatment with 0.20 gL(-1) of Fe(0) nanoparticles. An increase in the reduction of Cr(VI) from 45% to 100% was noticed with the increase in the loading of Fe(0) nanoparticles from 0.05 to 0.20 gL(-1). Reaction kinetics of Cr(VI) reduction showed pseudo first-order kinetics with rate constant in the range of 1.1 × 10(-3) to 3.9 × 10(-3) min(-1). This work demonstrates the potential utility of Fe(0) nanoparticles in treatment and remediation of Cr(VI)-contaminated water source.


Subject(s)
Chromium/analysis , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/analysis , Chromium/chemistry , Geographic Information Systems , India , Kinetics , Water Pollutants, Chemical/chemistry
7.
J Biomed Nanotechnol ; 7(1): 175-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21485858

ABSTRACT

Lindane, has been classified by the United States Environment Protection Agency as a potent carcinogen and teratogen. Zero-valent iron nanoparticles (nZVI) have been shown to effectively transform chlorinated hydrocarbons, organochlorine pesticides. An attempt has been made to explore the potential of nZVI for the remediation of Lindane contaminated soil. nZVI was synthesized by reducing FeCl3 with NaBH4. Lindane (10 microg/g) completely disappeared from spiked soil within 24 hours at nZVI concentration of 1.6 g/L, indicating its possible use in environmental cleanup. Reductive dehalogenation is the predominant mechanism for the removal of Lindane from spiked soil by nZVI. Dechlorination was further confirmed by the chloride ion release.


Subject(s)
Environmental Pollutants/isolation & purification , Environmental Restoration and Remediation/methods , Hexachlorocyclohexane/isolation & purification , Iron/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Soil Pollutants/isolation & purification , Environmental Pollutants/chemistry , Hexachlorocyclohexane/chemistry , Materials Testing , Particle Size , Soil Pollutants/chemistry
8.
J Environ Biol ; 32(6): 831-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22471223

ABSTRACT

Uptake and accumulation of metals in crops may cause possible health risks through food chain. A field survey was conducted to investigate the accumulation of potentially toxic metals contamination in soil and plants irrigated with complexed industrial effluents. Concentration of Zn, Cu and Pb was 205-255,101-130,118-177 microg g(-1) in rhizosphere soils and 116-223, 57-102 and 63-95 microg g(-1) d. wt. in root and 95-186, 44-75 and 27-58 microg g(-1) d. wt. in shoot, respectively. The trend in Cu and Pb was in the order: soil > root > shoot > seed while in Zn it was soil > root > seed > shoot. Roots accumulated a larger fraction of soil Cu (70%) > Zn (67%) > Pb (54%). Bioaccumulation coefficient of soil to root ranged from 51-98 for Zn, 54-85 for Cu and 43-63 for Pb.Analysis of variance showed marginal change in bioaccumulation coefficient, noticed between plants (p > 0.05) while it varied significantly (p < 0.01) between tissues and metals. It increased from root to seed/fruit (root > shoot > seed/fruit) while decreased between metals from Zn to Pb (Zn > Cu > Pb). Out of the three, two Cu and Pb accumulated to phyotoxic levels while Zn was within threshold limit of phytotoxicity.


Subject(s)
Metals, Heavy/chemistry , Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Soil/chemistry , Copper/chemistry , Copper/metabolism , Environmental Monitoring , India , Lead/chemistry , Lead/metabolism , Metallurgy , Plant Roots/metabolism , Zinc/chemistry , Zinc/metabolism
9.
Case Rep Med ; 20102010.
Article in English | MEDLINE | ID: mdl-20886029

ABSTRACT

Cardiac inflammatory myofibroblastic tumor (IMT) is a rare entity and is associated with distinct clinical, pathological and molecular features. The clinical behavior, natural history, biological potential, management and prognosis of such tumors are unclear. We present herewith an adolescent girl who presented with similar entity involving the junction of the right atrium and the inferior vena cava (IVC) in association with thrombocytosis and IVC thrombosis leading to obstruction of blood flow. Diagnostic tools included imaging and immuno-histopathology studies. Surgical management included resection of the tumor and thrombo-embolectomy of the IVC under cardiopulmonary bypass. This case is unique due to association of complete obstruction of IVC caused by the strategic location of the tumor, thrombosis of vena cava and association of thrombocytosis. These features have not been reported yet in relation to the cardiac IMT. This report will help in better understanding and management of similar cases in terms of planning cannulation of femoral veins or application of total hypothermic circulatory arrest during cardiopulmonary bypass and prompt us to look for recurrence or metastasis during follow up using echocardiography and laboratory investigations. The possibility of IMT should be kept in the differential diagnosis of cardiac tumors especially in children and adolescents.

10.
Environ Monit Assess ; 155(1-4): 467-75, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18629441

ABSTRACT

A study was conducted to test the effects of soil amendments on the bioavailability of heavy metals in a zinc mine tailings containing soil to plants, using the Indian mustard plant (Brassica juncea) as a test organism. Zinc mine tailing containing soil was amended with humus soil (HS) and phosphatic clay (PC). The zinc mine tailing containing soil (ZMTS) was characterized for heavy metals. It was mixed with PC and HS, and four mixtures were prepared. The first mixture contained ZMTS, and served as a control. The second mixture contained ZMTS and PC in the ratio of 1:1 (w/w). The third mixture contained ZMTS and HS in the ratio of 1:1(w/w). The fourth mixture containing ZMTS, PC and HS in the ratio of (2:1:1) (w/w). A slight increase in the bioavailability of Pb, Cu, Zn and Mn was noticed with increase in the incubation time from 14 to 42 days. The bioavailability of Pb, Cu, Zn and Mn from ZMTS alone in Brassica plant was in the range of 94-99% up to 42 days. Addition of PC and HS to the ZMTS soil reduced the bioavailabilities of Pb by (15%), of Cu by (20%), of Zn by (20%) and of Mn by (25%) in the mustard plant. The data showed that PC in the presence of HS had a high affinity for the heavy metals in the order of Pb, Cu, Zn and Mn.


Subject(s)
Mining , Mustard Plant/metabolism , Soil Pollutants/pharmacokinetics , Soil/analysis , Zinc/pharmacokinetics , Biological Availability , Environmental Monitoring , India , Soil Pollutants/metabolism , Zinc/metabolism
11.
Ecotoxicol Environ Saf ; 71(1): 76-85, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18082263

ABSTRACT

A hydroponics experiment using Indian mustard (Brassica juncea L.) was conducted to investigate the effect of different concentrations (10-160 microM) of cadmium (Cd) and a fixed concentration (500 microM) of ethylene diamine tetra acetic acid (EDTA) on Cd accumulation and its toxicity for 14 and 28 days (d). The results showed that Cd alone and Cd+EDTA increased total dry biomass production, photosynthetic pigments and total protein content of B. juncea up to 160 microM with respect to control for 14d (hormesis effect). Further, on treatment with Cd at 160 microM for 28d, dry biomass of root and shoot, total protein content and total chlorophyll decreased up to 73%, 58%, 67% and 53% respectively, while in the case of Cd+EDTA, the decrease in the above parameters was 38%, 50%, 57% and 46% with respect to their control. It was observed that the maximum Cd accumulation after 28d in the root and shoot was 1925 and 977 mg kg(-1) dry weight (dw), respectively, while in the case of Cd+EDTA it was 1013 and 2316 mg kg(-1)dw, respectively. Levels of phytochelatins (PCs), glutathione reductase (GR; EC 1.6.4.2), non-protein thiols (NP-SH) and glutathione (GSH) were monitored as plants primary and secondary metal detoxifying responses. Glutathione reductase showed three-fold increased activity for Cd and 2.2-fold for Cd+EDTA at 160 microM after 14d followed by decreased activity after 28d with respect to control. Maximum synthesis of PCs was found at 10 microM of Cd exposure followed by a gradual decline after 28d. This may be correlated with reduced level of GSH, probably due to reduced GR activity, resulting in enhanced oxidative stress as also proved by phenotypic changes in plants such as browning of roots and yellowing of leaves. Thus, the capacity of B. juncea to accumulate and tolerate high concentrations of Cd, through enhanced level of PCs, GSH, NP-SH and GR suggests its applicability for phytoremediation.


Subject(s)
Antioxidants/metabolism , Cadmium/pharmacology , Edetic Acid/pharmacology , Mustard Plant/metabolism , Phytochelatins/metabolism , Biodegradation, Environmental , Cadmium/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Dose-Response Relationship, Drug , Mustard Plant/drug effects , Photosynthesis/physiology , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism
12.
Environ Toxicol ; 22(6): 539-49, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18000854

ABSTRACT

To evaluate the biological effects of wastewater samples containing heavy metals, the effects of metal Cd (II) and As (V) were studied on Spirodela polyrrhiza L. The plants were exposed at metal concentrations 0.1, 0.5, 1, 2 microM of Cd (II) and 1, 5, 10, 20 microM of As (V) for a period of 1, 4, 7 d (day) alone and in combination of both. Plants accumulated 1855 mg kg(-1) dw (dry weight) Cd and 1230 mg kg(-1) dw As after 7 d in alone, whereas it was 885 mg kg(-1) dw Cd and 865 mg kg(-1) dw As in combination. The toxicological parameters such as fresh biomass, photosynthetic pigments, and total protein contents increased up to 2 microM of Cd (II) after 1 d and 10 microM of As (V) after 4 d with respect to control (Hormesis effect), followed by gradual decline at higher concentrations and duration. In case of Cd (II) a maximum decrease of 58% in protein content, 62% in fresh biomass, and 78% in total chlorophyll was observed at 2 microM, whereas, with As (V) 38% decrease in protein content, 34% in fresh biomass, and 52% in total chlorophyll was shown at 20 microM after 7 d. The metal tolerance strategy against metal induced reactive oxygen species adopted by the plants was investigated with reference to nonprotein thiols (NP-SH), cysteine, and ascorbic acid. The results of combined treatment revealed reduced toxicity at the level of fresh biomass, protein content, and chlorophyll; however, the amount of nonenzymatic antioxidant did not significantly (P = 0.172) increase as compared to alone treatment. Finally, it was concluded that due to high metal accumulation coupled with defense potential, the plant appears to have a potential for its use as phytoremediator species of aquatic environments.


Subject(s)
Araceae/drug effects , Arsenates/toxicity , Biomass , Cadmium/toxicity , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Antioxidants/metabolism , Araceae/metabolism , Chlorophyll/metabolism , Humans
13.
J Hazard Mater ; 147(3): 698-705, 2007 Aug 25.
Article in English | MEDLINE | ID: mdl-17303325

ABSTRACT

Sorption efficacy of phosphatic clay and humus rich soil alone and on combination were tested towards heavy metals present in zinc mine tailing (Zawar Zinc Mine), Udaipur (India). Characterization of the zinc mine tailing sample indicated the presence of Pb, Cu, Zn and Mn in the concentration of 637, 186, 720 and 577microg(-1), respectively. For sorption efficacy, the zinc mine tailing soil were properly amended with phosphatic clay and humus rich soil separately and in combination and leachability study was performed by batch experiment at different pH range from 3 to 9. The data showed that the percent leachability of heavy metal in non-amended soil was 75-90%. After amendment with phosphatic clay percent leachability of heavy metals became 35-45%. Further, the addition of humus soil to phosphatic clay decreased the percent leachability up to 5-15% at all tested pH. Column leachability experiment was performed to evaluate the rate of leachability. The shape of cumulative curves of Pb, Cu, Zn and Mn showed an increase in its concavity in following order: PbCu>Zn>Mn. Further, Langmuir isotherms applied for the sorption studies indicated that phosphatic clay in the presence of humus soil had high affinity for Pb followed by Cu, Zn and Mn, with sorption capacities (b) 139.94, 97.02, 83.32 and 67.58microgg(-1), respectively.


Subject(s)
Aluminum Silicates/chemistry , Metals, Heavy/chemistry , Mining , Phosphates/chemistry , Soil Pollutants/analysis , Soil , Zinc/chemistry , Adsorption , Clay , Environmental Monitoring
14.
Environ Monit Assess ; 133(1-3): 169-76, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17286176

ABSTRACT

Uptake /bioavailability study using the Indian mustard plant (Brassica juncea) was undertaken at the interval of 7, 14 and 21 days to test the immobilization of heavy metals from contaminated soil that were amended with humus soil and/or hydroxyapatite. For this, four sets consisting of non-humus soil + metals (Cd, Cr, Ni and Pb), humus soil + metals, non-humus and humus soil in the ratio of 1:3 + metals and non-humus soil: humus soil in the ratio of 1:3 + metals + 1% hydroxyapatite were prepared. The bioavailability of Pb, Cd, Cr and Ni in non-humus soil system was 58%, 67%, 65% and 63%, respectively in 7 days, more than 80% in 14 days and more than 90% in 21 days. Use of non-humus, humus soil in the ratio of 1:3 and addition of 1% hydroxyapatite decreased the bioavailability of lead around 21 to 22.5%, Cd 35 to 36%, Cr 25.5 to 26.9%, Ni 34 to 39% in 7, 14 and 21 days. Apart from this increase in the fresh weight of the plant was also noticed during the experiment. The data showed that addition of 1% hydroxyapatite in the non-humus-humus soil system caused the increase in the fresh weight around 90% in 7, 14 and 21 days as compared to plant grown in non-humus and metal soil system.


Subject(s)
Durapatite/chemistry , Plants/metabolism , Soil Pollutants/metabolism , Soil/analysis , Biological Availability
15.
Chemosphere ; 64(7): 1109-14, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16423377

ABSTRACT

Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.


Subject(s)
Cadmium/chemistry , Durapatite/chemistry , Lead/chemistry , Soil , Zinc/chemistry , Acetic Acid/chemistry , Adsorption , Kinetics , Sodium Hydroxide/chemistry , Soil Pollutants , Waste Management/methods
16.
Environ Monit Assess ; 102(1-3): 419-33, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15869200

ABSTRACT

Gomti river receives industrial as well as domestic wastes from various drains of Lucknow city. In the process the water and sediment of the river Gomti get contaminated with heavy metals and other pollutants. In the present study, impacts of domestic/industrial wastes on the water and sediment chemistry of river Gomti with special reference to heavy metals have been investigated in different seasons (summer, winter and rainy). For this, seven sampling sites: Gaughat, Mohan Meakin, Martyr's Memorial, Hanuman Setu, Nishatganj bridge, Pipraghat and Malhaur, in the river Gomti in Lucknow region were identified and samples of water and sediments were collected in all the three seasons. In the collected water and sediment samples, six metals (Cd, Cr, Cu, Ni, Pb, and Zn) were analyzed on ICP-AES (Inductively coupled plasma emission spectroscopy) Labtam Plasmalab 8440. High concentrations of all the metals were noticed in water and sediment in rainy season compared to summer and winter. Because in rainy season runoff from open contaminated sites, agricultural field and industries, directly comes into the river without any treatment. In both the cases, the concentration of zinc was maximum (0.091 microg/ml in water and 182.13 microg/g in sediment) and the concentration of cadmium (0.001 microg/ml in water and 17.26 microg/g in sediment) was minimum. Higher concentration of metal in water and sediment during rainy season could be due to the industrial/agricultural/domestic runoff coming into the river.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , India , Oxygen/analysis , Rain , Seasons
17.
Environ Int ; 31(3): 417-31, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15734194

ABSTRACT

Industry has become an essential part of modern society, and waste production is an inevitable outcome of the developmental activities. A material becomes waste when it is discarded without expecting to be compensated for its inherent value. These wastes may pose a potential hazard to the human health or the environment (soil, air, water) when improperly treated, stored, transported or disposed off or managed. Currently in India even though hazardous wastes, emanations and effluents are regulated, solid wastes often are disposed off indiscriminately posing health and environmental risk. In view of this, management of hazardous wastes including their disposal in environment friendly and economically viable way is very important and therefore suggestions are made for developing better strategies. Out of the various categories of the wastes, solid waste contributes a major share towards environmental degradation. The present paper outlines the nature of the wastes, waste generating industries, waste characterization, health and environmental implications of wastes management practices, steps towards planning, design and development of models for effective hazardous waste management, treatment, approaches and regulations for disposal of hazardous waste. Appraisal of the whole situation with reference to Indian scenario is attempted so that a better cost-effective strategies for waste management be evolved in future.


Subject(s)
Environmental Health , Hazardous Waste , Waste Management/methods , Cost-Benefit Analysis , Environmental Pollution/prevention & control , Humans , India , Industry , Social Conditions , Waste Management/economics
18.
J Hazard Mater ; 98(1-3): 177-81, 2003 Mar 17.
Article in English | MEDLINE | ID: mdl-12628785

ABSTRACT

Most of the available techniques for removal of heavy metals from solution such as leachates from waste sites are very expensive. The technique described in this paper is designed to study the removal of humic acid by alginate beads and the subsequent binding of the metals within the beads thus decreasing the leachability of heavy metals from a hazardous waste site. The entry of 500 mg/l humic acid into 3% calcium alginate beads in 24 h showed a distinct fluorescence as compared to the fluorescence shown by the entry of 100 and 250 mg/l of humic acid into alginate beads. Further, on treatment of calcium alginate beads containing 500 mg/l humic acid with metals such as Cu, Mn, Zn, Cr and Fe, quenching of fluorescence was noticed, which was maximum with Cu and minimum with Fe.


Subject(s)
Alginates , Humic Substances , Metals, Heavy , Environmental Pollution/prevention & control , Glucuronic Acid , Hazardous Waste , Hexuronic Acids , Industrial Waste , Microscopy, Fluorescence
19.
Ecotoxicol Environ Saf ; 52(2): 92-6, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12061824

ABSTRACT

Improper disposal of hazardous wastes can lead to release of potentially harmful substances through leaching such as heavy metals, which ultimately contaminate soil, sediment surface water, and groundwater through runoff. To remove these toxic metals and avoid any adverse effect on the ecosystem, a novel approach involving calcium alginate (CA) beads containing humic acid (HA) was used. For this, 10% leachates of the waste obtained from two major industrial units with electroplating processess were prepared at neutral pH and analyzed by atomic absorption spectrophotometry (AAS). Both leachates contained Cd, Cu, Cr, Ni, Mn, Fe, and Zn. The concentrations of Ni, Mn, Fe, and Zn in the waste were found to be significant. The leachates analyzed were passed through columns packed with calcium alginate beads with or without humic acid. The concentrations of various metals in beads and in different fractions collected after adsorption were measured. Data recorded indicate that calcium alginate beads containing humic acids are more efficient in removal of all metals in substantial amounts from the two leachates. Along with removal of metals, this process led to considerable detoxification of the leachates as tested by Microtox assay, indicated by earlier protection and higher EC(50). The significance of the results in relation to removal of toxic metals by beads containing humic acid is discussed.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Environmental Pollution/prevention & control , Hazardous Waste , Humic Substances/chemistry , Metals, Heavy/chemistry , Metals, Heavy/toxicity , Adsorption , Biodegradation, Environmental , Glucuronic Acid , Hexuronic Acids , Lethal Dose 50 , Metals, Heavy/analysis , Vibrio
20.
Environ Toxicol Pharmacol ; 12(3): 169-79, 2002 Oct.
Article in English | MEDLINE | ID: mdl-21782636

ABSTRACT

An integrated approach of clinical toxicology and epidemiology is an essential ingredient in environmental health risk management through molecular epidemiology and environmental genomics. The last decade has also seen the emergence of several biochemical markers useful in chemical risk assessment and in epidemiological studies. An appraisal of the concepts involved, the approaches required, and the potential scope of this approach is attempted here.

SELECTION OF CITATIONS
SEARCH DETAIL
...