Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 115(6): 1143-1153, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38285898

ABSTRACT

Many respiratory infections are selectively injurious to infants, yet the etiology of age-associated susceptibility is unknown. One such bacterial pathogen is Bordetella pertussis. In adult mice, innate interferon γ (IFN-γ) is produced by natural killer (NK) cells and restricts infection to the respiratory tract. In contrast, infant pertussis resembles disease in NK cell- and IFN-γ-deficient adult mice that experience disseminated lethal infection. We hypothesized that infants exhibit age-associated deficits in NK cell frequency, maturation, and responsiveness to B. pertussis, associated with low IFN-γ levels. To delineate mechanisms behind age-dependent susceptibility, we compared infant and adult mouse models of infection. Infection in infant mice resulted in impaired upregulation of IFN-γ and substantial bacterial dissemination. B. pertussis-infected infant mice displayed fewer pulmonary NK cells than adult mice. Furthermore, the NK cells in the infant mouse lungs had an immature phenotype, and the infant lung showed no upregulation of the IFN-γ-inducing cytokine IL-12p70. Adoptive transfer of adult NK cells into infants, or treatment with exogenous IFN-γ, significantly reduced bacterial dissemination. These data indicate that the lack of NK cell-produced IFN-γ significantly contributes to infant fulminant pertussis and could be the basis for other pathogen-induced, age-dependent respiratory diseases.


Subject(s)
Bordetella pertussis , Interferon-gamma , Killer Cells, Natural , Whooping Cough , Animals , Killer Cells, Natural/immunology , Interferon-gamma/metabolism , Whooping Cough/immunology , Mice , Bordetella pertussis/immunology , Lung/immunology , Lung/pathology , Lung/microbiology , Age Factors , Mice, Inbred C57BL , Animals, Newborn , Aging/immunology , Disease Models, Animal , Adoptive Transfer
2.
Virology ; 501: 119-126, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27912080

ABSTRACT

Expression of Kaposi's sarcoma herpesvirus vFLIP, a potent activator of NFkB signaling, promotes latency. Inhibition of NFkB signaling promotes lytic reactivation. We previously reported that lytic inducer, RTA, inhibits vFLIP induced NFkB signaling by inducing the degradation of vFLIP via the proteasome. Here we report that the cellular ubiquitin ligase, Itch, is required for RTA induced degradation of vFLIP. Expression of either Itch targeting shRNA or a dominant negative mutant of the ubiquitin ligase both increased the stability of vFLIP in the presence of RTA. Itch potently ubiquitinated vFLIP in vivo and in vitro. We provide evidence for interaction between RTA, vFLIP and Itch and we identified an RTA resistant mutant of vFLIP that is unable to interact with Itch. These observations contribute to our understanding of how RTA counteracts the activities of vFLIP.


Subject(s)
Herpesviridae Infections/enzymology , Immediate-Early Proteins/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Herpesviridae Infections/genetics , Herpesviridae Infections/virology , Herpesvirus 8, Human/enzymology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/genetics , Protein Binding , Proteolysis , Repressor Proteins/genetics , Trans-Activators/genetics , Ubiquitin-Protein Ligases/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...