Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(23): 15728-15749, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37967462

ABSTRACT

Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.


Subject(s)
Nuclear Proteins , Transcription Factors , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Protein Domains , Histones/metabolism , Cell Cycle Proteins/metabolism
2.
ACS Med Chem Lett ; 14(9): 1231-1236, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37736196

ABSTRACT

The 1,3-dihydro-2H-benzo[d]azepin-2-ones are potent and ligand-efficient pan-BET bromodomain inhibitors. Here we describe the extension of this template to exploit a bivalent mode of action, binding simultaneously to both bromodomains. Initially the linker length and attachment vectors compatible with bivalent binding were explored, leading to the discovery of exceptionally potent bivalent BET inhibitors within druglike rule-of-5 space.

3.
BMC Biol ; 20(1): 182, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986286

ABSTRACT

BACKGROUND: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation. RESULTS: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. CONCLUSIONS: This study identifies SP140 as a druggable epigenetic therapeutic target for CD.


Subject(s)
Crohn Disease , Tumor Necrosis Factor Inhibitors , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Cytokines/genetics , Cytokines/metabolism , Epigenesis, Genetic , Humans , Macrophages , Transcription Factors/genetics
4.
J Med Chem ; 64(16): 12200-12227, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387088

ABSTRACT

The functions of the bromodomain and extra terminal (BET) family of proteins have been implicated in a wide range of diseases, particularly in the oncology and immuno-inflammatory areas, and several inhibitors are under investigation in the clinic. To mitigate the risk of attrition of these compounds due to structurally related toxicity findings, additional molecules from distinct chemical series were required. Here we describe the structure- and property-based optimization of the in vivo tool molecule I-BET151 toward I-BET282E, a molecule with properties suitable for progression into clinical studies.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Arthritis/drug therapy , Imidazoles/therapeutic use , Nuclear Proteins/antagonists & inhibitors , Quinolines/therapeutic use , Transcription Factors/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , Arthritis/chemically induced , Collagen , Crystallography, X-Ray , Dogs , Female , Imidazoles/chemical synthesis , Imidazoles/metabolism , Male , Mice , Molecular Structure , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Protein Domains , Quinolines/chemical synthesis , Quinolines/metabolism , Rats, Inbred Lew , Rats, Wistar , Structure-Activity Relationship , Transcription Factors/chemistry , Transcription Factors/metabolism
5.
J Med Chem ; 64(15): 10742-10771, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34232650

ABSTRACT

Domain-specific BET bromodomain ligands represent an attractive target for drug discovery with the potential to unlock the therapeutic benefits of antagonizing these proteins without eliciting the toxicological aspects seen with pan-BET inhibitors. While we have reported several distinct classes of BD2 selective compounds, namely, GSK620, GSK549, and GSK046, only GSK046 shows high aqueous solubility. Herein, we describe the lead optimization of a further class of highly soluble compounds based upon a picolinamide chemotype. Focusing on achieving >1000-fold selectivity for BD2 over BD1 ,while retaining favorable physical chemical properties, compound 36 was identified as being 2000-fold selective for BD2 over BD1 (Brd4 data) with >1 mg/mL solubility in FaSSIF media. 36 represents a valuable new in vivo ready molecule for the exploration of the BD2 phenotype.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Pyridines/pharmacology , Transcription Factors/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Pyridines/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism
6.
J Med Chem ; 63(17): 9020-9044, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787145

ABSTRACT

The bromodomain and extraterminal domain (BET) family of epigenetic regulators comprises four proteins (BRD2, BRD3, BRD4, BRDT), each containing tandem bromodomains. To date, small molecule inhibitors of these proteins typically bind all eight bromodomains of the family with similar affinity, resulting in a diverse range of biological effects. To enable further understanding of the broad phenotype characteristic of pan-BET inhibition, the development of inhibitors selective for individual, or sets of, bromodomains within the family is required. In this regard, we report the discovery of a potent probe molecule possessing up to 150-fold selectivity for the N-terminal bromodomains (BD1s) over the C-terminal bromodomains (BD2s) of the BETs. Guided by structural information, a specific amino acid difference between BD1 and BD2 domains was targeted for selective interaction with chemical functionality appended to the previously developed I-BET151 scaffold. Data presented herein demonstrate that selective inhibition of BD1 domains is sufficient to drive anti-inflammatory and antiproliferative effects.


Subject(s)
Anti-Inflammatory Agents/chemistry , Cell Cycle Proteins/antagonists & inhibitors , Drug Design , Transcription Factors/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Binding Sites , Cell Cycle Proteins/classification , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cytokines/metabolism , Half-Life , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Mice , Molecular Dynamics Simulation , Phylogeny , Protein Domains , Quinolones/chemistry , Quinolones/metabolism , Quinolones/pharmacology , Transcription Factors/classification , Transcription Factors/metabolism
7.
ACS Med Chem Lett ; 11(8): 1581-1587, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32832027

ABSTRACT

Pan-BET inhibitors have shown profound efficacy in a number of in vivo preclinical models and have entered the clinic in oncology trials where adverse events have been reported. These inhibitors interact equipotently with the eight bromodomains of the BET family of proteins. To better understand the contribution of each domain to their efficacy and to improve from their safety profile, selective inhibitors are required. This Letter discloses the profile of GSK973, a highly selective inhibitor of the second bromodomains of the BET proteins that has undergone extensive preclinical in vitro and in vivo characterization.

8.
J Med Chem ; 63(17): 9070-9092, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32691591

ABSTRACT

Pan-bromodomain and extra terminal domain (BET) inhibitors interact equipotently with the eight bromodomains of the BET family of proteins and have shown profound efficacy in a number of in vitro phenotypic assays and in vivo pre-clinical models in inflammation or oncology. A number of these inhibitors have progressed to the clinic where pharmacology-driven adverse events have been reported. To better understand the contribution of each domain to their efficacy and improve their safety profile, selective inhibitors are required. This article discloses the profile of GSK046, also known as iBET-BD2, a highly selective inhibitor of the second bromodomains of the BET proteins that has undergone extensive pre-clinical in vitro and in vivo characterization.


Subject(s)
Amides/chemical synthesis , Drug Design , Transcription Factors/antagonists & inhibitors , Amides/chemistry , Amides/metabolism , Animals , Benzene Derivatives/chemistry , Binding Sites , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Crystallography, X-Ray , Humans , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Protein Domains , Quantum Theory , Rats , Structure-Activity Relationship , Transcription Factors/metabolism
9.
J Med Chem ; 63(10): 5212-5241, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32321240

ABSTRACT

Most bromodomain inhibitors mimic the interactions of the natural acetylated lysine (KAc) histone substrate through key interactions with conserved asparagine and tyrosine residues within the binding pocket. Herein we report the optimization of a series of phenyl sulfonamides that exhibit a novel mode of binding to non-bromodomain and extra terminal domain (non-BET) bromodomains through displacement of a normally conserved network of four water molecules. Starting from an initial hit molecule, we report its divergent optimization toward the ATPase family AAA domain containing 2 (ATAD2) and cat eye syndrome chromosome region, candidate 2 (CECR2) domains. This work concludes with the identification of (R)-55 (GSK232), a highly selective, cellularly penetrant CECR2 inhibitor with excellent physicochemical properties.


Subject(s)
ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Sulfonamides/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , HEK293 Cells , Humans , Protein Binding/physiology , Protein Domains/drug effects , Protein Domains/physiology , Protein Structure, Secondary , Sulfonamides/chemistry , Sulfonamides/pharmacology
10.
J Med Chem ; 63(2): 714-746, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31904959

ABSTRACT

The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize N-acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles. Herein, we describe the discovery of a candidate-quality dimethylpyridone benzimidazole compound which originated from the hybridization of a dimethylphenol benzimidazole series, identified using encoded library technology, with an N-methyl pyridone series identified through fragment screening. Optimization via structure- and property-based design led to I-BET469, which possesses favorable oral pharmacokinetic properties, displays activity in vivo, and is projected to have a low human efficacious dose.


Subject(s)
High-Throughput Screening Assays/methods , Proteins/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Chemokine CCL2/biosynthesis , Crystallography, X-Ray , Drug Discovery , Drug Evaluation, Preclinical , Drug Synergism , Humans , Interleukin-6/antagonists & inhibitors , Leukocytes/drug effects , Male , Mice , Models, Molecular , Protein Processing, Post-Translational/drug effects , Small Molecule Libraries
11.
J Med Chem ; 62(16): 7506-7525, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31398032

ABSTRACT

The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.


Subject(s)
ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , Drug Design , Drug Discovery/methods , High-Throughput Screening Assays/methods , Protein Domains , Small Molecule Libraries/pharmacology , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , Biophysical Phenomena , Catalytic Domain , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Molecular Structure , Protein Binding/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
12.
J Med Chem ; 61(18): 8321-8336, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30226378

ABSTRACT

ATAD2 is a cancer-associated protein whose bromodomain has been described as among the least druggable of its class. In our recent disclosure of the first chemical probe against this bromodomain, GSK8814 (6), we described the use of a conformationally constrained methoxy piperidine to gain selectivity over the BET bromodomains. Here we describe an orthogonal conformational restriction strategy of the piperidine ring to give potent and selective tropane inhibitors and show structural insights into why this was more challenging than expected. Greater understanding of why different rational approaches succeeded or failed should help in the future design of selectivity in the bromodomain family.


Subject(s)
ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , Drug Discovery , Nuclear Proteins/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Cell Cycle Proteins , Humans , Models, Molecular , Molecular Structure , Protein Conformation , Protein Domains , Structure-Activity Relationship
13.
Angew Chem Int Ed Engl ; 55(38): 11382-6, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27530368

ABSTRACT

ATAD2 is a cancer-associated protein whose bromodomain has been described as among the least druggable of that target class. Starting from a potent lead, permeability and selectivity were improved through a dual approach: 1) using CF2 as a sulfone bio-isostere to exploit the unique properties of fluorine, and 2) using 1,3-interactions to control the conformation of a piperidine ring. This resulted in the first reported low-nanomolar, selective and cell permeable chemical probe for ATAD2.

14.
ACS Med Chem Lett ; 7(6): 552-7, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27326325

ABSTRACT

The BRPF (Bromodomain and PHD Finger-containing) protein family are important scaffolding proteins for assembly of MYST histone acetyltransferase complexes. A selective benzimidazolone BRPF1 inhibitor showing micromolar activity in a cellular target engagement assay was recently described. Herein, we report the optimization of this series leading to the identification of a superior BRPF1 inhibitor suitable for in vivo studies.

15.
J Med Chem ; 58(15): 6151-78, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26230603

ABSTRACT

ATAD2 is a bromodomain-containing protein whose overexpression is linked to poor outcomes in a number of different cancer types. To date, no potent and selective inhibitors of the bromodomain have been reported. This article describes the structure-based optimization of a series of naphthyridones from micromolar leads with no selectivity over the BET bromodomains to inhibitors with sub-100 nM ATAD2 potency and 100-fold BET selectivity.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , Naphthyridines/chemistry , Naphthyridines/pharmacology , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/chemistry , DNA-Binding Proteins/chemistry , Models, Molecular , Molecular Structure
16.
J Med Chem ; 58(14): 5649-73, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26155854

ABSTRACT

Overexpression of ATAD2 (ATPase family, AAA domain containing 2) has been linked to disease severity and progression in a wide range of cancers, and is implicated in the regulation of several drivers of cancer growth. Little is known of the dependence of these effects upon the ATAD2 bromodomain, which has been categorized as among the least tractable of its class. The absence of any potent, selective inhibitors limits clear understanding of the therapeutic potential of the bromodomain. Here, we describe the discovery of a hit from a fragment-based targeted array. Optimization of this produced the first known micromolar inhibitors of the ATAD2 bromodomain.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/chemistry , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Quinolones/chemistry , Quinolones/pharmacology
17.
ACS Med Chem Lett ; 5(11): 1190-5, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25408830

ABSTRACT

The BRPF (bromodomain and PHD finger-containing) protein family are important scaffolding proteins for assembly of MYST histone acetyltransferase complexes. Here, we report the discovery, binding mode, and structure-activity relationship (SAR) of the first potent, selective series of inhibitors of the BRPF1 bromodomain.

18.
J Med Chem ; 52(4): 1180-9, 2009 Feb 26.
Article in English | MEDLINE | ID: mdl-19191554

ABSTRACT

N-(3-fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acetyl]-4-piperidinamine 12 (GSK962040) is a novel small molecule motilin receptor agonist. It possesses excellent activity at the recombinant human motilin receptor and also at the native rabbit motilin receptor where its agonist activity results in potentiation of the amplitude of neuronal-mediated contractions of isolated gastric antrum tissue. Compound 12 also possesses highly promising pharmacokinetic profiles in both rat and dog, and these results, in combination with further profiling in human native tissue and an in vivo model of gastrointestinal transit in the rabbit, have led to its selection as a candidate for further development.


Subject(s)
Drug Discovery , Gastrointestinal Agents/pharmacology , Piperazines/pharmacology , Piperidines/pharmacology , Pyloric Antrum/drug effects , Receptors, Gastrointestinal Hormone/agonists , Receptors, Neuropeptide/agonists , Animals , Dogs , Gastrointestinal Motility/drug effects , Humans , Muscle Contraction/drug effects , Piperazines/chemistry , Piperidines/chemistry , Pyloric Antrum/physiology , Rabbits , Rats
19.
Bioorg Med Chem Lett ; 18(24): 6429-36, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-19006669

ABSTRACT

Optimisation of urea (5), identified from high throughput screening and subsequent array chemistry, has resulted in the identification of pyridine carboxamide (33) which is a potent motilin receptor agonist possessing favourable physicochemical and ADME profiles. Compound (33) has demonstrated prokinetic-like activity both in vitro and in vivo in the rabbit and therefore represents a promising novel small molecule motilin receptor agonist for further evaluation as a gastroprokinetic agent.


Subject(s)
Carbon/chemistry , Pyridines/chemistry , Receptors, Gastrointestinal Hormone/agonists , Receptors, Neuropeptide/agonists , Animals , Chemistry, Pharmaceutical/methods , Drug Design , Gastrins/chemistry , Humans , Inhibitory Concentration 50 , Kinetics , Models, Chemical , Pyridines/chemical synthesis , Pyridines/pharmacology , Rabbits , Rats , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Neuropeptide/chemistry
20.
Bioorg Med Chem Lett ; 18(20): 5609-13, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18809327

ABSTRACT

6-Phenylnicotinamide (2) was previously identified as a potent TRPV1 antagonist with activity in an in vivo model of inflammatory pain. Optimization of this lead through modification of both the biaryl and heteroaryl components has resulted in the discovery of 6-(4-fluorophenyl)-2-methyl-N-(2-methylbenzothiazol-5-yl)nicotinamide (32; SB-782443) which possesses an excellent overall profile and has been progressed into pre-clinical development.


Subject(s)
Benzothiazoles/chemical synthesis , Chemistry, Pharmaceutical/methods , Niacinamide/analogs & derivatives , Niacinamide/chemical synthesis , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/chemistry , Administration, Oral , Animals , Benzothiazoles/pharmacology , Capsaicin/chemistry , Cell Line , Drug Design , Guinea Pigs , Humans , Inflammation , Inhibitory Concentration 50 , Models, Chemical , Niacinamide/chemistry , Niacinamide/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...