ABSTRACT
The study assessed the effect of soil slope on Mycobacterium avium subsp. paratuberculosis transport into rainwater runoff from agricultural soil after application of M. avium subsp. paratuberculosis-contaminated slurry. Under field conditions, 24 plots of undisturbed loamy soil 1 by 2 m(2) were placed on platforms. Twelve plots were used for water runoff: 6 plots at a 3% slope and 6 plots at a 15% slope. Half of the plots of each slope were treated with M. avium subsp. paratuberculosis-contaminated slurry, and half were not treated. Using the same experimental design, 12 plots were established for soil sampling on a monthly basis using the same spiked slurry application and soil slopes. Runoff following natural rainfall was collected and analyzed for M. avium subsp. paratuberculosis, coliforms, and turbidity. M. avium subsp. paratuberculosis was detected in runoff from all plots treated with contaminated slurry and one control plot. A higher slope (15%) increased the likelihood of M. avium subsp. paratuberculosis detection but did not affect the likelihood of finding coliforms. Daily rainfall increased the likelihood that runoff would have coliforms and the coliform concentration, but it decreased the M. avium subsp. paratuberculosis concentration in the runoff. When there was no runoff, rain was associated with increased M. avium subsp. paratuberculosis concentrations. Coliform counts in runoff were related to runoff turbidity. M. avium subsp. paratuberculosis presence/absence, however, was related to turbidity. Study duration decreased bacterial detection and concentration. These findings demonstrate the high likelihood that M. avium subsp. paratuberculosis in slurry spread on pastures will contaminate water runoff, particularly during seasons with high rainfall. M. avium subsp. paratuberculosis contamination of water has potential consequences for both animal and human health.