Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38764145

ABSTRACT

BACKGROUND: Platelets are well known for their roles in hemostasis, but they also play a key role in thromboinflammatory pathways by regulating endothelial health, stimulating angiogenesis, and mediating host defense through both contact dependent and independent signaling. When activated, platelets degranulate releasing multiple active substances. We hypothesized that the soluble environment formed by trauma platelet releasates attenuates thromboinflammation via mitigation of trauma induced endothelial permeability and metabolomic reprogramming. METHODS: Blood was collected from injured and healthy patients to generate platelet releasates and plasma in parallel. Permeability of endothelial cells when exposed to trauma platelet releasates (TPR) and plasma (TP) was assessed via resistance measurement by Electric Cell-substrate Impedance Sensing (ECIS). Endothelial cells treated with TPR and TP were subjected to mass spectrometry-based metabolomics. RESULTS: TP increased endothelial permeability, whereas TPR decreased endothelial permeability when compared to untreated cells. When TP and TPR were mixed ex vivo, TPR mitigated TP-induced permeability, with significant increase in AUC compared to TP alone. Metabolomics of TPR and TP demonstrated disrupted redox reactions and anti-inflammatory mechanisms. CONCLUSION: TPRs provide endothelial barrier protection against TP-induced endothelial permeability. Our findings highlight a potential beneficial action of activated platelets on the endothelium in injured patients through disrupted redox reactions and increased antioxidants. Our findings support that soluble signaling from platelet degranulation may mitigate the endotheliopathy of trauma. The clinical implications of this are that activated platelets may prove a promising therapeutic target in the complex integration of thrombosis, endotheliopathy, and inflammation in trauma. LEVEL OF EVIDENCE: Prognostic/Epidemiological, Level III.

2.
Article in English | MEDLINE | ID: mdl-38797883

ABSTRACT

BACKGROUND: Both healthy plasma and cytoprotective aPC (3K3A-aPC) have been shown to mitigate the endotheliopathy of trauma (EoT), but optimal therapeutics remain unknown. Our aim was therefore to determine optimal therapies to mitigate EoT by investigating the effectiveness of 3K3A-aPC with and without plasma-based resuscitation strategies. METHODS: Electric cell-substrate impedance sensing (ECIS) was used to measure real-time permeability changes in endothelial cells. Cells were treated with a 2 µg/mL solution of aPC 30 minutes prior to stimulation with plasma taken from severely injured trauma patients (ISS > 15 and BD < -6) (TP). Healthy plasma, or plasma frozen within 24 hours (FP24), was added concomitantly with TP. Cells treated with thrombin and untreated cells were included in this study as control groups. RESULTS: A dose-dependent difference was found between the 5% and 10% plasma-treated groups when HUVECs were simultaneously stimulated with TP (µd 7.346 95%CI 4.574 to 10.12). There was no difference when compared to TP alone in the 5% (µd 5.713 95%CI -1.751 to 13.18) or 10% group (µd -1.633 95%CI -9.097 to 5.832). When 3K3A-aPC was added to plasma and TP, the 5% group showed improvement in permeability compared to TP alone (µd 10.11 95%CI 2.642 to 17.57), but there was no difference in the 10% group (µd -1.394 95%CI -8.859 to 6.070). The combination of 3K3A-aPC, plasma, and TP at both the 5% plasma (µd -28.52 95%CI-34.72 to -22.32) and 10% plasma concentrations (µd -40.02 95%CI -46.22 to -33.82) had higher inter-cellular permeability than the 3K3A-aPC pre-incubation group. CONCLUSION: Our data shows that FP24, in a post-trauma environment, pre-treatment with 3K3A-aPC can potentially mitigate the EoT to a greater degree than FP24 with or without 3K3A-aPC. Although further exploration is needed, this represents a potentially ideal and perhaps superior therapeutic treatment for the dysregulated thromboinflammation of injured patients. LEVEL OF EVIDENCE: Prognostic/Epidemiological, Therapeutic/Care Management, Level III.

3.
Article in English | MEDLINE | ID: mdl-38745347

ABSTRACT

BACKGROUND: Patients with type O blood may have an increased risk of hemorrhagic complications due to lower baseline levels of von Willebrand Factor (vWF) and factor VIII, but the transition to a mortality difference in trauma is less clear. We hypothesized that type O trauma patients will have differential proteomic and metabolomic signatures in response to trauma beyond vWF and FVIII alone. METHODS: Patients meeting the highest level of trauma activation criteria were prospectively enrolled. Blood samples were collected upon arrival to the emergency department. Proteomic and metabolomic (multi-omics) analyses of these samples were performed using liquid chromatography-mass spectrometry. Demographic, clinical, and multi-omics data were compared between patients with type O blood versus all other patients. RESULTS: There were 288 patients with multi-omics data; 146 (51%) had type O blood. Demographics, injury patterns, and initial vital signs and laboratory measurements were not different between groups. Type O patients had increased lengths of stay (7 vs. 6 days, p = 0.041) and a trend towards decreased mortality secondary to traumatic brain injury compared to other causes (TBI, 44.4 % vs. 87.5%, p = 0.055). Type O patients had decreased levels of mannose-binding lectin (MBL) and MBL associated serine proteases 1 and 2 which are required for the initiation of the lectin pathway of complement activation. Type O patients also had metabolite differences signifying energy metabolism and mitochondrial dysfunction. CONCLUSION: Blood type O patients have a unique multi-omics signature, including decreased levels of proteins required to activate the lectin complement pathway. This may lead to overall decreased levels of complement activation and decreased systemic inflammation in the acute phase possibly leading to a survival advantage, especially in TBI. However, this may later impair healing. Future work will need to confirm these associations, and animal studies are needed to test therapeutic targets. LEVEL OF EVIDENCE: Retrospective Comparative Study, Level IV.

4.
J Trauma Acute Care Surg ; 97(1): 48-56, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38548690

ABSTRACT

INTRODUCTION: Smoking is a public health threat because of its well-described link to increased oxidative stress-related diseases including peripheral vascular disease and coronary artery disease. Tobacco use has been linked to risk of inpatient trauma morbidity including acute respiratory distress syndrome; however, its mechanistic effect on comprehensive metabolic heterogeneity has yet to be examined. METHODS: Plasma was obtained on arrival from injured patients at a Level 1 trauma center and analyzed with modern mass spectrometry-based metabolomics. Patients were stratified by nonsmoker, passive smoker, and active smoker by lower, interquartile, and upper quartile ranges of cotinine intensity peaks. Patients were substratified by high injury/high shock (Injury Severity Score, ≥15; base excess, <-6) and compared with healthy controls. p Value of <0.05 following false discovery rate correction of t test was considered significant. RESULTS: Forty-eight patients with high injury/high shock (7 nonsmokers [15%], 25 passive smokers [52%], and 16 active smokers [33%]) and 95 healthy patients who served as controls (30 nonsmokers [32%], 43 passive smokers [45%], and 22 active smokers [23%]) were included. Elevated metabolites in our controls who were active smokers include enrichment in chronic inflammatory and oxidative processes. Elevated metabolites in active smokers in high injury/high shock include enrichment in the malate-aspartate shuttle, tyrosine metabolism, carnitine synthesis, and oxidation of very long-chain fatty acids. CONCLUSION: Smoking promotes a state of oxidative stress leading to mitochondrial dysfunction, which is additive to the inflammatory milieu of trauma. Smoking is associated with impaired mitochondrial substrate utilization of long-chain fatty acids, aspartate, and tyrosine, all of which accentuate oxidative stress following injury. This altered expression represents an ideal target for therapies to reduce oxidative damage toward the goal of personalized treatment of trauma patients. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level IV.


Subject(s)
Metabolomics , Wounds and Injuries , Humans , Male , Female , Adult , Wounds and Injuries/metabolism , Wounds and Injuries/blood , Wounds and Injuries/complications , Middle Aged , Metabolomics/methods , Smoking/adverse effects , Smoking/metabolism , Smoking/blood , Oxidative Stress/physiology , Case-Control Studies , Injury Severity Score , Trauma Centers , Cotinine/blood , Cotinine/metabolism , Biomarkers/blood , Biomarkers/metabolism
5.
Shock ; 61(2): 322-329, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38407818

ABSTRACT

ABSTRACT: Objective: We sought to identify potential drivers behind resuscitative endovascular balloon occlusion of the aorta (REBOA) induced reperfusion coagulopathy using novel proteomic methods. Background: Coagulopathy associated with REBOA is poorly defined. The REBOA Zone 1 provokes hepatic and intestinal ischemia that may alter coagulation factor production and lead to molecular pathway alterations that compromises hemostasis. We hypothesized that REBOA Zone 1 would lead to reperfusion coagulopathy driven by mediators of fibrinolysis, loss of coagulation factors, and potential endothelial dysfunction. Methods: Yorkshire swine were subjected to a polytrauma injury (blast traumatic brain injury, tissue injury, and hemorrhagic shock). Pigs were randomized to observation only (controls, n = 6) or to 30 min of REBOA Zone 1 (n = 6) or REBOA Zone 3 (n = 4) as part of their resuscitation. Thromboelastography was used to detect coagulopathy. ELISA assays and mass spectrometry proteomics were used to measure plasma protein levels related to coagulation and systemic inflammation. Results: After the polytrauma phase, balloon deflation of REBOA Zone 1 was associated with significant hyperfibrinolysis (TEG results: REBOA Zone 1 35.50% versus control 9.5% vs. Zone 3 2.4%, P < 0.05). In the proteomics and ELISA results, REBOA Zone 1 was associated with significant decreases in coagulation factor XI and coagulation factor II, and significant elevations of active tissue plasminogen activator, plasmin-antiplasmin complex complexes, and syndecan-1 (P < 0.05). Conclusion: REBOA Zone 1 alters circulating mediators of clot formation, clot lysis, and increases plasma levels of known markers of endotheliopathy, leading to a reperfusion-induced coagulopathy compared with REBOA Zone 3 and no REBOA.


Subject(s)
Balloon Occlusion , Blood Coagulation Disorders , Multiple Trauma , Animals , Swine , Tissue Plasminogen Activator , Proteomics , Aorta
6.
J Proteome Res ; 23(4): 1163-1173, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38386921

ABSTRACT

Trauma-induced coagulopathy (TIC) is a leading contributor to preventable mortality in severely injured patients. Understanding the molecular drivers of TIC is an essential step in identifying novel therapeutics to reduce morbidity and mortality. This study investigated multiomics and viscoelastic responses to polytrauma using our novel swine model and compared these findings with severely injured patients. Molecular signatures of TIC were significantly associated with perturbed coagulation and inflammation systems as well as extensive hemolysis. These results were consistent with patterns observed in trauma patients who had multisystem injuries. Here, intervention using resuscitative endovascular balloon occlusion of the aorta following polytrauma in our swine model revealed distinct multiomics alterations as a function of placement location. Aortic balloon placement in zone-1 worsened ischemic damage and mitochondrial dysfunction, patterns that continued throughout the monitored time course. While placement in zone-III showed a beneficial effect on TIC, it showed an improvement in effective coagulation. Taken together, this study highlights the translational relevance of our polytrauma swine model for investigating therapeutic interventions to correct TIC in patients.


Subject(s)
Balloon Occlusion , Multiple Trauma , Humans , Animals , Swine , Multiomics , Multiple Trauma/complications , Multiple Trauma/therapy , Aorta , Blood Coagulation , Balloon Occlusion/methods
7.
J Trauma Acute Care Surg ; 96(1): 116-122, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37733304

ABSTRACT

BACKGROUND: Activated Protein C (aPC) plays dual roles after injury, driving both trauma-induced coagulopathy (TIC) by cleaving, and thus inactivating, factors Va and VIIIa and depressing fibrinolysis while also mediating an inflammomodulatory milieu via protease activated receptor-1 (PAR-1) cytoprotective signaling. Because of this dual role, it represents and ideal target for study and therapeutics after trauma. A known aPC variant, 3K3A-aPC, has been engineered to preserve cytoprotective activity while retaining minimal anticoagulant activity rendering it potentially ideal as a cytoprotective therapeutic after trauma. We hypothesized that 3K3A-aPC would mitigate the endotheliopathy of trauma by protecting against endothelial permeability. METHODS: We used electric cell-substrate impedance sensing to measure permeability changes in real time in primary endothelial cells. These were cultured, grown to confluence, and treated with a 2 µg/mL solution of 3K3A-aPC at 180 minutes, 120 minutes, 60 minutes, 30 minutes prior to stimulation with ex vivo plasma taken from severely injured trauma patients (Injury Severity Score > 15 and BD < -6) (trauma plasma [TP]). Cells treated with thrombin and untreated cells were included in this study as control groups. Permeability changes were recorded in real time via electric cell-substrate impedance sensing for 30 minutes after treatment with TP. We quantified permeability changes in the control and treatment groups as area under the curve (AUC). Rac1/RhoA activity was also compared between these groups. Statistical significance was determined by one-way ANOVA followed by a post hoc analysis using Tukey's multiple comparison's test. RESULTS: Treatment with aPC mitigated endothelial permeability induced by ex vivo trauma plasma at all pre-treatment time points. The AUC of the 30-minute 3K3A-aPC pretreatment group was higher than TP alone (mean diff. 22.12 95% CI [13.75, 30.49], p < 0.0001) (Figure). Moreover, the AUC of the 60-minute, 120-minute, and 180-minute pretreatment groups was also higher than TP alone (mean diff., 16.30; 95% confidence interval [CI], 7.93-24.67; 19.43; 95% CI, 11.06-27.80, and 18.65; 95% CI, 10.28-27.02;, all p < 0.0001, respectively). Rac1/RhoA activity was higher in the aPC pretreatment group when compared with all other groups ( p < 0.01). CONCLUSION: Pretreatment with 3K3A-aPC, which retains its cytoprotective function but has only ~5% of its anticoagulant function, abrogates the effects of trauma-induced endotheliopathy. This represents a potential therapeutic treatment for dysregulated thromboinflammation for injured patients by minimizing aPC's role in trauma-induced coagulopathy while concurrently amplifying its essential cytoprotective function. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level III.


Subject(s)
Protein C , Thrombosis , Humans , Protein C/pharmacology , Protein C/therapeutic use , Protein C/metabolism , Endothelial Cells/metabolism , Thromboinflammation , Inflammation/metabolism , Anticoagulants/therapeutic use
8.
Ann Surg ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073572

ABSTRACT

OBJECTIVE: We aimed to investigate if ex vivo plasma from injured patients causes endothelial calcium (Ca2+) influx as a mechanism of trauma-induced endothelial permeability. SUMMARY BACKGROUND DATA: Endothelial permeability after trauma contributes to post-injury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca2+ signaling may play a role. METHODS: Ex vivo plasma from injured patients with "Low Injury/Low Shock" (injury severity score [ISS]<15, base excess [BE])≥-6mEq/L) and "High Injury/High Shock" (ISS≥15, BE<-6mEq/L) were used to treat endothelial cells. Experimental conditions included Ca2+ removal from the extracellular buffer, cyclopiazonic acid pre-treatment to deplete intracellular Ca2+ stores, and GSK2193874 pre-treatment to block the TRPV4 Ca2+ channel. Live cell fluorescence microscopy and ECIS were used to assess cytosolic Ca2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain (MLC) phosphorylation and actomyosin contraction. RESULTS: Compared to Low Injury/Low Shock plasma, High Injury/High Shock induced greater cytosolic Ca2+ increase. Cytosolic Ca2+ increase, MLC phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca2+ present. High Injury/High Shock plasma did not induce endothelial permeability without extracellular Ca2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca2+ influx and permeability. CONCLUSIONS: This study illuminates a novel mechanism of post-injury endotheliopathy involving Ca2+ influx via the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca2+-targeted therapies and interventions in the care of severely injured patients.

9.
Shock ; 60(5): 652-663, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37695733

ABSTRACT

ABSTRACT: Background: Trauma-induced hypocalcemia is common and associated with adverse outcomes, but the mechanisms remain unclear. Thus, we aimed to characterize the metabolomic and proteomic differences between normocalcemic and hypocalcemic trauma patients to illuminate biochemical pathways that may underlie a distinct pathology linked with this clinical phenomenon. Methods: Plasma was obtained on arrival from injured patients at a Level 1 Trauma Center. Samples obtained after transfusion were excluded. Multiple regression was used to adjust the omics data for injury severity and arrival base excess before metabolome- and proteome-wide comparisons between normocalcemic (ionized Ca 2+ > 1.0 mmol/L) and hypocalcemic (ionized Ca 2+ ≤ 1.0 mmol/L) patients using partial least squares-discriminant analysis. OmicsNet and Gene Ontology were used for network and pathway analyses, respectively. Results: Excluding isolated traumatic brain injury and penetrating injury, the main analysis included 36 patients (n = 14 hypocalcemic, n = 22 normocalcemic). Adjusted analyses demonstrated distinct metabolomic and proteomic signatures for normocalcemic and hypocalcemic patients. Hypocalcemic patients had evidence of mitochondrial dysfunction (tricarboxylic acid cycle disruption, dysfunctional fatty acid oxidation), inflammatory dysregulation (elevated damage-associated molecular patterns, activated endothelial cells), aberrant coagulation pathways, and proteolytic imbalance with increased tissue destruction. Conclusions: Independent of injury severity, hemorrhagic shock, and transfusion, trauma-induced hypocalcemia is associated with early metabolomic and proteomic changes that may reflect unique pathology in hypocalcemic trauma patients. This study paves the way for future experiments to investigate mechanisms, identify intervenable pathways, and refine our management of hypocalcemia in severely injured patients.


Subject(s)
Hypocalcemia , Shock, Hemorrhagic , Humans , Hypocalcemia/metabolism , Calcium/metabolism , Endothelial Cells/metabolism , Proteomics
10.
Mol Cell Oncol ; 10(1): 2238873, 2023.
Article in English | MEDLINE | ID: mdl-37649964

ABSTRACT

Poorly differentiated esophageal adenocarcinoma (PDEAC) has a dismal prognosis. Glypican-1(GPC-1) is known to be upregulated in several cancer types in contrast to healthy tissues, rendering it as a biomarker. Nevertheless, the potential therapeutic targeting of GPC-1 has not been explored in PDEAC. There is accumulating evidence that GPC-1, via upregulation of PI3K/Akt/ERK signaling, plays a crucial role in the progression and chemoresistance in cancer. Pictilisib, a class I pan PI3K inhibitor, has shown promising antitumor results in clinical trials, however, has not gained widespread success due to acquired drug resistance. This study investigated the role of GPC-1 in chemo-resistant PDEAC and appraises the impact of targeted silencing of GPC-1 on the antitumor effects of Pictilisib in PDEAC cell lines. Immunohistochemistry assays in PDEAC tissue specimens demonstrated a pronounced intensity of staining with GPC-1. Upregulation of GPC-1 was found to be correlated with advanced stage and poor prognosis. In-vitro studies examined the influence of GPC-1 knockdown and Pictilisib, both as individual agents and in combination, on cytotoxicity, cell cycle distribution, apoptosis, and gene expression profiles. Silencing GPC-1 alone showed significantly reduced cell viability, migration, colony formation, epithelial-mesenchymal transition, and stemness in PDEAC cells. Significantly, knockdown of GPC-1 combined with low-dose Pictilisib led to enhancement of cytotoxicity, cell cycle arrest, and apoptosis in ESO-26 and OE-33 cells. In the xenograft mouse model, the combination of Pictilisib and GPC-1 knockdown exhibited synergy. These findings suggest that GPC-1 represents a promising target to augment chemosensitivity in esophageal adenocarcinoma.

11.
Am J Surg ; 226(6): 790-797, 2023 12.
Article in English | MEDLINE | ID: mdl-37541795

ABSTRACT

BACKGROUND: The interactions of polytrauma, shock, and traumatic brain injury (TBI) on thromboinflammatory responses remain unclear and warrant investigation as we strive towards personalized medicine in trauma. We hypothesized that comprehensive omics characterization of plasma would identify unique metabolic and thromboinflammatory pathways following TBI. METHODS: Patients were categorized as TBI vs Non-TBI, and stratified into Polytrauma or minimally injured. Discovery 'omics was employed to quantify the top differently expressed proteins and metabolites of TBI and Non-TBI patient groups. RESULTS: TBI compared to Non-TBI showed gene enrichment in coagulation/complement cascades and neuronal markers. TBI was associated with elevation in glycolytic metabolites and conjugated bile acids. Division into isolated TBI vs polytrauma showed further distinction of proteomic and metabolomic signatures. CONCLUSION: Identified mediators involving in neural inflammation, blood brain barrier disruption, and bile acid building leading to TBI associated coagulopathy offer suggestions for follow up mechanistic studies to target personalized interventions.


Subject(s)
Blood Coagulation Disorders , Brain Injuries, Traumatic , Multiple Trauma , Humans , Proteomics , Blood Coagulation Disorders/etiology , Metabolomics
12.
J Trauma Acute Care Surg ; 95(6): 925-934, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37405823

ABSTRACT

BACKGROUND: The coagulopathy of traumatic brain injury (TBI) remains poorly understood. Contradictory descriptions highlight the distinction between systemic and local coagulation, with descriptions of systemic hypercoagulability despite intracranial hypocoagulopathy. This perplexing coagulation profile has been hypothesized to be due to tissue factor release. The objective of this study was to assess the coagulation profile of TBI patients undergoing neurosurgical procedures. We hypothesize that dura violation is associated with higher tissue factor and conversion to a hypercoagulable profile and unique metabolomic and proteomic phenotype. METHODS: This is a prospective, observational cohort study of all adult TBI patients at an urban, Level I trauma center who underwent a neurosurgical procedure from 2019 to 2021. Whole blood samples were collected before and then 1 hour following dura violation. Citrated rapid and tissue plasminogen activator (tPA) thrombelastography (TEG) were performed, in addition to measurement of tissue factory activity, metabolomics, and proteomics. RESULTS: Overall, 57 patients were included. The majority (61%) were male, the median age was 52 years, 70% presented after blunt trauma, and the median Glasgow Coma Score was 7. Compared with pre-dura violation, post-dura violation blood demonstrated systemic hypercoagulability, with a significant increase in clot strength (maximum amplitude of 74.4 mm vs. 63.5 mm; p < 0.0001) and a significant decrease in fibrinolysis (LY30 on tPAchallenged TEG of 1.4% vs. 2.6%; p = 0.04). There were no statistically significant differences in tissue factor. Metabolomics revealed notable increases in metabolites involved in late glycolysis, cysteine, and one-carbon metabolites, and metabolites involved in endothelial dysfunction/arginine metabolism/responses to hypoxia. Proteomics revealed notable increase in proteins related to platelet activation and fibrinolysis inhibition. CONCLUSION: A systemic hypercoagulability is observed in TBI patients, characterized by increased clot strength and decreased fibrinolysis and a unique metabolomic and proteomics phenotype independent of tissue factor levels.


Subject(s)
Blood Coagulation Disorders , Brain Injuries, Traumatic , Thrombophilia , Adult , Humans , Male , Female , Middle Aged , Tissue Plasminogen Activator , Cohort Studies , Proteomics , Thromboplastin , Thrombophilia/diagnosis , Thrombophilia/etiology , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/etiology , Brain Injuries, Traumatic/complications , Thrombelastography/methods
13.
Ann Surg ; 278(6): e1299-e1312, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37334680

ABSTRACT

OBJECTIVE: Advanced mass spectrometry methods were leveraged to analyze both proteomics and metabolomics signatures in plasma upon controlled tissue injury (TI) and hemorrhagic shock (HS)-isolated or combined-in a swine model, followed by correlation to viscoelastic measurements of coagulopathy via thrombelastography. BACKGROUND: TI and HS cause distinct molecular changes in plasma in both animal models and trauma patients. However, the contribution to coagulopathy of trauma, the leading cause of preventable mortality in this patient population remains unclear. The recent development of a swine model for isolated or combined TI+HS facilitated the current study. METHODS: Male swine (n=17) were randomized to either isolated or combined TI and HS. Coagulation status was analyzed by thrombelastography during the monitored time course. The plasma fractions of the blood draws (at baseline; end of shock; and at 30 minutes, 1, 2, and 4 hours after shock) were analyzed by mass spectrometry-based proteomics and metabolomics workflows. RESULTS: HS-isolated or combined with TI-caused the most severe omic alterations during the monitored time course. While isolated TI delayed the activation of coagulation cascades. Correlation to thrombelastography parameters of clot strength (maximum amplitude) and breakdown (LY30) revealed signatures of coagulopathy which were supported by analysis of gene ontology-enriched biological pathways. CONCLUSION: The current study provides a comprehensive characterization of proteomic and metabolomic alterations to combined or isolated TI and HS in a swine model and identifies early and late omics correlates to viscoelastic measurements in this system.


Subject(s)
Blood Coagulation Disorders , Shock, Hemorrhagic , Animals , Male , Blood Coagulation , Blood Coagulation Disorders/etiology , Disease Models, Animal , Proteomics , Shock, Hemorrhagic/complications , Swine , Thrombelastography , Random Allocation
14.
J Trauma Acute Care Surg ; 94(3): 361-370, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36730076

ABSTRACT

BACKGROUND: Release of neutrophil extracellular traps (NETosis) may mediate postinjury organ dysfunction, but mechanisms remain unclear. The intracellular serine protease inhibitor (serpin) B1 is vital to neutrophil function and has been shown to restrict NETosis in inflammatory settings. In this study, we used discovery proteomics to identify the proteomic signature of trauma-induced NETosis. We hypothesized that serpinB1 would be a major component of this NET protein profile and associated with adverse outcomes. METHODS: This was a post hoc analysis of data collected as part of the COMBAT randomized clinical trial. Blood was collected from injured patients at a single Level I Trauma Center. Proteomic analyses were performed through targeted liquid chromatography coupled with mass spectrometry. Abundances of serpinB1 and known NETosis markers were analyzed with patient and injury characteristics, clinical data, and outcomes. RESULTS: SerpinB1 levels on emergency department (ED) arrival were significantly correlated with proteomic markers of NETosis, including core histones, transketolase, and S100A8/A9 proteins. More severely injured patients had elevated serpinB1 and NETosis markers on ED arrival. Levels of serpinB1 and top NETosis markers were significantly elevated on ED arrival in nonsurvivors and patients with fewer ventilator- and ICU-free days. In proteome-wide receiver operating characteristic analysis, serpinB1 was consistently among the top proteins associated with adverse outcomes. Among NETosis markers, levels of serpinB1 early in the patient's course exhibited the greatest separation between patients with fewer and greater ventilator- and ICU-free days. Gene Ontology analysis of top predictors of adverse outcomes further supports NETosis as a potential mediator of postinjury organ dysfunction. CONCLUSION: We have identified a proteomic signature of trauma-induced NETosis, and NETosis is an early process following severe injury that may mediate organ dysfunction. In addition, serpinB1 is a major component of this NET protein profile that may serve as an early marker of excessive NETosis after injury.


Subject(s)
Proteomics , Serpins , Humans , Multiple Organ Failure , Neutrophils/metabolism , Histones , Serpins/metabolism
15.
Shock ; 59(1): 12-19, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36378232

ABSTRACT

ABSTRACT: Background: Severe injury can provoke systemic processes that lead to organ dysfunction, and hemolysis of both native and transfused red blood cells (RBCs) may contribute. Hemolysis can release erythrocyte proteins, such as hemoglobin and arginase-1, the latter with the potential to disrupt arginine metabolism and limit physiologic NO production. We aimed to quantify hemolysis and arginine metabolism in trauma patients and measure association with injury severity, transfusions, and outcomes. Methods: Blood was collected from injured patients at a level I trauma center enrolled in the COMBAT (Control of Major Bleeding After Trauma) trial. Proteomics and metabolomics were performed on plasma fractions through liquid chromatography coupled with mass spectrometry. Abundances of erythrocyte proteins comprising a hemolytic profile as well as haptoglobin, l -arginine, ornithine, and l -citrulline (NO surrogate marker) were analyzed at different timepoints and correlated with transfusions and adverse outcomes. Results: More critically injured patients, nonsurvivors, and those with longer ventilator requirement had higher levels of hemolysis markers with reduced l -arginine and l -citrulline. In logistic regression, elevated hemolysis markers, reduced l -arginine, and reduced l -citrulline were significantly associated with these adverse outcomes. An increased number of blood transfusions were significantly associated with elevated hemolysis markers and reduced l -arginine and l -citrulline independently of New Injury Severity Score and arterial base excess. Conclusions: Severe injury induces intravascular hemolysis, which may mediate postinjury organ dysfunction. In addition to native RBCs, transfused RBCs can lyse and may exacerbate trauma-induced hemolysis. Arginase-1 released from RBCs may contribute to the depletion of l -arginine and the subsequent reduction in the NO necessary to maintain organ perfusion.


Subject(s)
Arginine , Hemolysis , Humans , Arginase/metabolism , Nitric Oxide/metabolism , Citrulline , Erythrocyte Transfusion/adverse effects , Multiple Organ Failure
16.
J Occup Environ Hyg ; 20(1): 14-22, 2023 01.
Article in English | MEDLINE | ID: mdl-36260509

ABSTRACT

Livestock workers experience an increased burden of bioaerosol-induced respiratory disease including a high prevalence of rhinosinusitis. Dairy operations generate bioaerosols spanning the inhalable size fraction (0-100 µm) containing bacterial constituents such as endotoxin. Particles with an aerodynamic diameter between 10 and 100 µm are known to deposit in the nasopharyngeal region and likely affect the upper respiratory tract. We evaluated the effectiveness of a hypertonic saline nasal lavage in reducing inflammatory responses in dairy workers from a high-volume dairy operation. Inhalable personal breathing zone samples and pre-/post-shift nasal lavage samples from each participant over five consecutive days were collected. The treatment group (n = 5) received hypertonic saline while the control group (n = 5) received normotonic saline. Personal breathing zone samples were analyzed for particulate concentrations and endotoxin using gravimetric and enzymatic methods, respectively. Pro- and anti-inflammatory cytokines (i.e., IL-8, IL-10, and TNF-α) were measured from nasal lavage samples using a multiplex assay. Inhalable dust concentrations ranged from 0.15 to 1.9 mg/m3. Concentrations of both pro- and anti-inflammatory cytokines, specifically IL-6, IL-8, and IL-10, were significantly higher in the treatment group compared to the control group (p < 0.02, p < 0.04, and p < 0.01, respectively). Further analysis of IL-10 anti-inflammatory indicates a positive association between hypertonic saline administration and IL-10 production. This pilot study demonstrates that hypertonic saline nasal lavages were successful in upregulating anti-inflammatory cytokines to support larger interventional studies.


Subject(s)
Interleukin-10 , Interleukin-8 , Humans , Pilot Projects , Saline Solution, Hypertonic , Cytokines , Dust/prevention & control , Dust/analysis , Endotoxins/analysis , Anti-Inflammatory Agents
17.
Eur J Trauma Emerg Surg ; 49(2): 1079-1089, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36319860

ABSTRACT

INTRODUCTION: Tissue injury (TI) and hemorrhagic shock (HS) are the major contributors to trauma-induced coagulopathy (TIC). However, the individual contributions of these insults are difficult to discern clinically because they typically coexist. TI has been reported to release procoagulants, while HS has been associated with bleeding. We developed a large animal model to isolate TI and HS and characterize their individual mechanistic pathways. We hypothesized that while TI and HS are both drivers of TIC, they provoke different pathways; specifically, TI reduces time to clotting, whereas, HS decreases clot strength stimulates hyperfibrinolysis. METHODS: After induction of general anesthesia, 50 kg male, Yorkshire swine underwent isolated TI (bilateral muscle cutdown of quadriceps, bilateral femur fractures) or isolated HS (controlled bleeding to a base excess target of - 5 mmol/l) and observed for 240 min. Thrombelastography (TEG), calcium levels, thrombin activatable fibrinolysis inhibitor (TAFI), protein C, plasminogen activator inhibitor 1 (PAI-1), and plasminogen activator inhibitor 1/tissue-type plasminogen activator complex (PAI-1-tPA) were analyzed at pre-selected timepoints. Linear mixed models for repeated measures were used to compare results throughout the model. RESULTS: TI resulted in elevated histone release which peaked at 120 min (p = 0.02), and this was associated with reduced time to clot formation (R time) by 240 min (p = 0.006). HS decreased clot strength at time 30 min (p = 0.003), with a significant decline in calcium (p = 0.001). At study completion, HS animals had elevated PAI-1 (p = 0.01) and PAI-1-tPA (p = 0.04), showing a trend toward hyperfibrinolysis, while TI animals had suppressed fibrinolysis. Protein C, TAFI and skeletal myosin were not different among the groups. CONCLUSION: Isolated injury in animal models can help elucidate the mechanistic pathways leading to TIC. Our results suggest that isolated TI leads to early histone release and a hypercoagulable state, with suppressed fibrinolysis. In contrast, HS promotes poor clot strength and hyperfibrinolysis resulting in hypocoagulability.


Subject(s)
Blood Coagulation Disorders , Shock, Hemorrhagic , Male , Animals , Swine , Plasminogen Activator Inhibitor 1 , Shock, Hemorrhagic/complications , Protein C , Calcium , Histones , Blood Coagulation Disorders/etiology , Fibrinolysis/physiology , Hemorrhage/complications , Thrombelastography/adverse effects
18.
Shock ; 58(6): 542-548, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36548645

ABSTRACT

ABSTRACT: Introduction: Severely injured patients develop a dysregulated inflammatory state characterized by vascular endothelial permeability, which contributes to multiple organ failure. To date, however, the mediators of and mechanisms for this permeability are not well established. Endothelial permeability in other inflammatory states such as sepsis is driven primarily by overactivation of the RhoA GTPase. We hypothesized that tissue injury and shock drive endothelial permeability after trauma by increased RhoA activation leading to break down of endothelial tight and adherens junctions. Methods: Human umbilical vein endothelial cells (HUVECs) were grown to confluence, whereas continuous resistance was measured using electrical cell-substrate impedance sensing (ECIS) Z-Theta technology, 10% ex vivo plasma from severely injured trauma patients was added, and resistance measurements continued for 2 hours. Areas under the curve (AUCs) were calculated from resistance curves. For GTPase activity analysis, HUVECs were grown to confluence and incubated with 10% trauma plasma for 5 minutes before harvesting of cell lysates. Rho and Rac activity were determined using a G-LISA assay. Significance was determined using Mann-Whitney tests or Kruskal-Wallis test, and Spearman ρ was calculated for correlations. Results: Plasma from severely injured patients induces endothelial permeability with plasma from patients with both severe injury and shock contributing most to this increased permeability. Surprisingly, Injury Severity Score (ISS) does not correlate with in vitro trauma-induced permeability (-0.05, P > 0.05), whereas base excess (BE) does correlate with permeability (-0.47, P = 0.0001). The combined impact of shock and injury resulted in a significantly smaller AUC in the injury + shock group (ISS > 15, BE < -9) compared with the injury only (ISS > 15, BE > -9; P = 0.04) or minimally injured (ISS < 15, BE > -9; P = 0.005) groups. In addition, incubation with injury + shock plasma resulted in higher RhoA activation ( P = 0.002) and a trend toward decreased Rac1 activation ( P = 0.07) compared with minimally injured control. Conclusions: Over the past decade, improved early survival in patients with severe trauma and hemorrhagic shock has led to a renewed focus on the endotheliopathy of trauma. This study presents the largest study to date measuring endothelial permeability in vitro using plasma collected from patients after traumatic injury. Here, we demonstrate that plasma from patients who develop shock after severe traumatic injury induces endothelial permeability and increased RhoA activation in vitro . Our ECIS model of trauma-induced permeability using ex vivo plasma has potential as a high throughput screening tool to phenotype endothelial dysfunction, study mediators of trauma-induced permeability, and screen potential interventions.


Subject(s)
Capillary Permeability , Endothelium, Vascular , Shock, Hemorrhagic , Wounds and Injuries , rhoA GTP-Binding Protein , Humans , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells , Multiple Organ Failure/etiology , Multiple Organ Failure/metabolism , rhoA GTP-Binding Protein/metabolism , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/metabolism , Wounds and Injuries/complications
19.
J Gastrointest Oncol ; 13(5): 2082-2104, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36388647

ABSTRACT

Background: Glypican 1 (GPC1) is a heparan sulphate proteoglycan cell membrane protein. It is implicated in driving cancers of the breast, brain, pancreas, and prostate; however, its role in esophagogastric cancer (EGAC) remains unexplored. The aim of the study was to investigate and elucidate the molecular mechanistic of GPC1 in human EGAC. Methods: Thirty tissue and 120 microarray sections of EGAC were evaluated with Anti-GPC1 immunohistochemistry. Loss and gain of GPC1 function were performed using lentivirus transfection in EGAC cell lines. Mechanistically, AKT/GSK/ß-catenin pathway was evaluated using AKT inhibitor MK-2206 and Wnt/ß-catenin stimulant LiCl. Results: GPC1 overexpression was found in 102 cases (68%). Overexpression of GPC1 correlated with lymph node metastasis, poor differentiation and decreased overall survival. Lentivirus mediated GPC1 knockdown resulted in decreased cell proliferation, migration, invasion, and colony formation. Knockdown caused G0/G1 cell cycle arrest, increased apoptosis, and reduced epithelial mesenchymal transition (EMT). GPC1 mediated its effects by activation of AKT/GSK/ß-catenin pathway. Conclusions: This is the first descriptive study to decipher the role of GPC1 in EGAC. Our results suggest that GPC1 regulates cell proliferation and growth and may serve as an attractive oncotarget in EGAC.

20.
PLoS One ; 17(7): e0270817, 2022.
Article in English | MEDLINE | ID: mdl-35789221

ABSTRACT

Blood Brain Barrier (BBB) breakdown is a secondary form of brain injury which has yet to be fully elucidated mechanistically. Existing research suggests that breakdown of tight junction proteins between endothelial cells is a primary driver of increased BBB permeability following injury, and intercellular signaling between primary cells of the neurovascular unit: endothelial cells, astrocytes, and pericytes; contribute to tight junction restoration. To expound upon this body of research, we analyzed the effects of severely injured patient plasma on each of the cell types in monoculture and together in a triculture model for the transcriptional and translational expression of the tight junction proteins Claudins 3 and 5, (CLDN3, CLDN5) and Zona Occludens 1 (ZO-1). Conditioned media transfer studies were performed to illuminate the cell type responsible for differential tight junction expression. Our data show that incubation with 5% human ex vivo severely injured patient plasma is sufficient to produce a differential response in endothelial cell tight junction mRNA and protein expression. Endothelial cells in monoculture produced a significant increase of CLDN3 and CLDN5 mRNA expression, (3.98 and 3.51 fold increase vs. control respectively, p<0.01) and CLDN5 protein expression, (2.58 fold change vs. control, p<0.01), whereas in triculture, this increase was attenuated. Our triculture model and conditioned media experiments suggest that conditioned media from astrocytes and pericytes and a triculture of astrocytes, pericytes and endothelial cells are sufficient in attenuating the transcriptional increases of tight junction proteins CLDN3 and CLDN5 observed in endothelial monocultures following incubation with severely injured trauma plasma. This data suggests that inhibitory molecular signals from astrocytes and pericytes contributes to prolonged BBB breakdown following injury via tight junction transcriptional and translational downregulation of CLDN5.


Subject(s)
Astrocytes , Pericytes , Astrocytes/metabolism , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Endothelial Cells/metabolism , Humans , Pericytes/metabolism , RNA, Messenger/metabolism , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...