Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(12)2023 06 22.
Article in English | MEDLINE | ID: mdl-37345657

ABSTRACT

Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults and remains an important public health issue worldwide. Here we demonstrate that the expression of stimulator of interferon genes (STING) is increased in patients with DR and animal models of diabetic eye disease. STING has been previously shown to regulate cell senescence and inflammation, key contributors to the development and progression of DR. To investigate the mechanism whereby STING contributes to the pathogenesis of DR, diabetes was induced in STING-KO mice and STINGGT (loss-of-function mutation) mice, and molecular alterations and pathological changes in the retina were characterized. We report that retinal endothelial cell senescence, inflammation, and capillary degeneration were all inhibited in STING-KO diabetic mice; these observations were independently corroborated in STINGGT mice. These protective effects resulted from the reduction in TBK1, IRF3, and NF-κB phosphorylation in the absence of STING. Collectively, our results suggest that targeting STING may be an effective therapy for the early prevention and treatment of DR.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Animals , Mice , Diabetic Retinopathy/genetics , Endothelial Cells , Nucleotidyltransferases/genetics , Inflammation , Cellular Senescence , Chromogranin A
2.
Biomaterials ; 278: 121159, 2021 11.
Article in English | MEDLINE | ID: mdl-34634664

ABSTRACT

The SARS-CoV-2 virus has caused an unprecedented global crisis, and curtailing its spread requires an effective vaccine which elicits a diverse and robust immune response. We have previously shown that vaccines made of a polymeric glyco-adjuvant conjugated to an antigen were effective in triggering such a response in other disease models and hypothesized that the technology could be adapted to create an effective vaccine against SARS-CoV-2. The core of the vaccine platform is the copolymer p(Man-TLR7), composed of monomers with pendant mannose or a toll-like receptor 7 (TLR7) agonist. Thus, p(Man-TLR7) is designed to target relevant antigen-presenting cells (APCs) via mannose-binding receptors and then activate TLR7 upon endocytosis. The p(Man-TLR7) construct is amenable to conjugation to protein antigens such as the Spike protein of SARS-CoV-2, yielding Spike-p(Man-TLR7). Here, we demonstrate Spike-p(Man-TLR7) vaccination elicits robust antigen-specific cellular and humoral responses in mice. In adult and elderly wild-type mice, vaccination with Spike-p(Man-TLR7) generates high and long-lasting titers of anti-Spike IgGs, with neutralizing titers exceeding levels in convalescent human serum. Interestingly, adsorbing Spike-p(Man-TLR7) to the depot-forming adjuvant alum amplified the broadly neutralizing humoral responses to levels matching those in mice vaccinated with formulations based off of clinically-approved adjuvants. Additionally, we observed an increase in germinal center B cells, antigen-specific antibody secreting cells, activated T follicular helper cells, and polyfunctional Th1-cytokine producing CD4+ and CD8+ T cells. We conclude that Spike-p(Man-TLR7) is an attractive, next-generation subunit vaccine candidate, capable of inducing durable and robust antibody and T cell responses.


Subject(s)
COVID-19 , Immunity, Humoral , Adjuvants, Immunologic , Aged , Animals , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , Immunity, Cellular , Mice , SARS-CoV-2
3.
ACS Cent Sci ; 7(8): 1368-1380, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34466656

ABSTRACT

The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle. We evaluated the vaccination efficacy of these surface-decorated polymersomes (RBDsurf) in mice compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl-lipid-A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that a multivalent surface display of spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

4.
bioRxiv ; 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33851166

ABSTRACT

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBDsurf) compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that multivalent surface display of Spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

5.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33762337

ABSTRACT

In melanoma, the induction of lymphatic growth (lymphangiogenesis) has long been correlated with metastasis and poor prognosis, but we recently showed it can synergistically enhance cancer immunotherapy and boost T cell immunity. Here, we develop a translational approach for exploiting this "lymphangiogenic potentiation" of immunotherapy in a cancer vaccine using lethally irradiated tumor cells overexpressing vascular endothelial growth factor C (VEGF-C) and topical adjuvants. Our "VEGFC vax" induced extensive local lymphangiogenesis and promoted stronger T cell activation in both the intradermal vaccine site and draining lymph nodes, resulting in higher frequencies of antigen-specific T cells present systemically than control vaccines. In mouse melanoma models, VEGFC vax elicited potent tumor-specific T cell immunity and provided effective tumor control and long-term immunological memory. Together, these data introduce the potential of lymphangiogenesis induction as a novel immunotherapeutic strategy to consider in cancer vaccine design.


Subject(s)
Cancer Vaccines , Melanoma , Animals , Lymphangiogenesis/physiology , Lymphatic Metastasis , Melanoma/pathology , Mice , T-Lymphocytes/metabolism , Vascular Endothelial Growth Factor C/metabolism
6.
Biomaterials ; 257: 120233, 2020 10.
Article in English | MEDLINE | ID: mdl-32791386

ABSTRACT

We demonstrate a novel approach to reverse advanced stages of blindness using hydrogel-mediated delivery of retinal pigmented epithelium (RPE) and photoreceptors directly to the degenerated retina of blind mice. With sodium iodate (NaIO3) injections in mice, both RPE and photoreceptors degenerate, resulting in complete blindness and recapitulating the advanced retinal degeneration that is often observed in humans. We observed vision restoration only with co-transplantation of RPE and photoreceptors in a hyaluronic acid-based hydrogel, and not with transplantation of each cell type alone as determined with optokinetic head tracking and light avoidance assays. Both RPE and photoreceptors survived significantly better when co-transplanted than in their respective single cell type controls. While others have pursued transplantation of one of either RPE or photoreceptors, we demonstrate the importance of transplanting both cell types with a minimally-invasive hydrogel for vision repair in a degenerative disease model of the retina.


Subject(s)
Retinal Degeneration , Animals , Disease Models, Animal , Epithelium , Hydrogels , Mice , Retina , Retinal Degeneration/therapy , Retinal Pigment Epithelium
7.
Adv Mater ; 31(36): e1901166, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322299

ABSTRACT

Many 3D in vitro models induce breast cancer spheroid formation; however, this alone does not recapitulate the complex in vivo phenotype. To effectively screen therapeutics, it is urgently needed to validate in vitro cancer spheroid models against the gold standard of xenografts. A new oxime-crosslinked hyaluronan (HA) hydrogel is designed, manipulating gelation rate and mechanical properties to grow breast cancer spheroids in 3D. This HA-oxime breast cancer model maintains the gene expression profile most similar to that of tumor xenografts based on a pan-cancer gene expression profile (comprising 730 genes) of three different human breast cancer subtypes compared to Matrigel or conventional 2D culture. Differences in gene expression between breast cancer cultures in HA-oxime versus Matrigel or 2D are confirmed for 12 canonical pathways by gene set variation analysis. Importantly, drug response is dependent on the culture method. Breast cancer cells respond better to the Rac inhibitor (EHT-1864) and the PI3K inhibitor (AZD6482) when cultured in HA-oxime versus Matrigel. This study demonstrates the superiority of an HA-based hydrogel as a platform for in vitro breast cancer culture of both primary, patient-derived cells and cell lines, and provides a hydrogel culture model that closely matches that in vivo.


Subject(s)
Breast Neoplasms/pathology , Cell Transformation, Neoplastic , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Oximes/chemistry , Spheroids, Cellular/drug effects , Animals , Benchmarking , Cell Line, Tumor , Humans , Mice , Phosphatidylinositol 3-Kinases/metabolism , Spheroids, Cellular/pathology
8.
Biomacromolecules ; 17(2): 476-84, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26762290

ABSTRACT

Poor cell survival in vitro and in vivo is one of the key challenges in tissue engineering. Prosurvival therapeutic proteins, such as insulin-like growth factor-1 (IGF-1), can promote cell viability but require controlled delivery systems due to their short half-lives and rapid clearance. Biocompatible materials are commonly used for drug delivery platforms or to encapsulate cells for increased viability, but few materials have been used for both applications simultaneously. In this work, we present a dual-use platform. A blend of hyaluronan and methylcellulose, known to promote cell survival, was covalently modified with Src homology 3 (SH3)-binding peptides and demonstrated tunable, affinity-based release of the prosurvival fusion protein SH3-IGF-1. The material also significantly increased the viability of retinal pigment epithelium cells under anchorage-independent conditions. This novel platform is applicable to a broad range of cells and protein therapeutics and is a promising drug delivery/cell transplantation strategy to increase the viability of both exogenous and endogenous cells in tissue engineering applications.


Subject(s)
Hydrogels/chemistry , Insulin-Like Growth Factor I/pharmacology , Cell Culture Techniques , Cell Proliferation , Cell Survival , Cells, Cultured , Culture Media/chemistry , Epithelial Cells/physiology , Human Embryonic Stem Cells/physiology , Humans , Insulin-Like Growth Factor I/chemistry , Retinal Pigment Epithelium
9.
Front Neurosci ; 9: 483, 2015.
Article in English | MEDLINE | ID: mdl-26733796

ABSTRACT

The process of neurogenesis, through which the entire nervous system of an organism is formed, has attracted immense scientific attention for decades. How can a single neural stem cell give rise to astrocytes, oligodendrocytes, and neurons? Furthermore, how is a neuron led to choose between the hundreds of different neuronal subtypes that the vertebrate CNS contains? Traditionally, niche signals and transcription factors have been on the spotlight. Recent research is increasingly demonstrating that the answer may partially lie in epigenetic regulation of gene expression. In this article, we comprehensively review the role of post-translational histone modifications in neurogenesis in both the embryonic and adult CNS.

10.
Neuropsychopharmacology ; 39(1): 169-88, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24002187

ABSTRACT

The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood-brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair.


Subject(s)
Biocompatible Materials/therapeutic use , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/therapy , Drug Delivery Systems/methods , Nerve Degeneration/drug therapy , Nerve Degeneration/therapy , Animals , Cell- and Tissue-Based Therapy/methods , Humans , Hydrogels/therapeutic use , Neuroprotective Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...