Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genet Syst ; 96(1): 41-53, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33731512

ABSTRACT

It is vital to measure the levels of genetic diversity and differentiation between populations in a species to understand the current genetic structure and evolution of the species. Here, MIG-seq (multiplexed inter-simple sequence repeat genotyping by sequencing) was employed to assess the genetic variation in two tropical leguminous tree species, Dalbergia cochinchinensis and D. nigrescens, in Cambodia and Thailand. Sequence data for 255-618 loci, each with an approximate length of 100 bp, were obtained, and the nucleotide diversity, Tajima's D and FST were computed. The estimates calculated from the data obtained by MIG-seq were compared to those obtained by Sanger sequencing of nine nuclear coding genes in D. cochinchinensis in our previous study. The nucleotide diversity at the MIG-seq loci was slightly higher than that at silent sites in the coding loci, whereas the FST values at the MIG-seq loci were generally lower than those at the coding loci, although the differences were not significant. Moreover, nucleotide diversities within populations of the two species were similar to each other, at approximately 0.005. Three and four population clusters were genetically recognized in D. cochinchinensis and D. nigrescens, respectively. Although the populations were differentiated from each other, the levels of differentiation among them, as measured by FST, were higher in D. cochinchinensis than in D. nigrescens. This indicates higher levels of gene flow between the populations in the latter species. We recommend using MIG-seq for quick surveys of genetic variation because it is cost-effective and results in smaller variance in the estimates of population genetic parameters.


Subject(s)
Dalbergia/genetics , Forests , Polymorphism, Genetic , Cambodia , Microsatellite Repeats , Thailand
2.
Sci Rep ; 8(1): 15875, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367122

ABSTRACT

Maintaining the accretion potential and three dimensional structure of coral reefs is a priority but reef-building scleractinian corals are highly threatened and retreating. Hence future reefs are predicted to be dominated by non-constructional taxa. Since the Late Triassic however, other non-scleractinian anthozoans such as Heliopora have contributed to tropical and subtropical reef-building. Heliopora is an ancient and highly conserved reef building octocoral genus within the monospecific Family Helioporidae, represented by a single extant species - H. coerulea, Pallas, 1766. Here we show integrated morphological, genomic and reproductive evidence to substantiate the existence of a second species within the genus Heliopora. Importantly, some individuals of the new species herein described as Heliopora hiberniana sp. nov. feature a white skeleton indicating that the most diagnostic and conserved Heliopora character (the blue skeleton) can be displaced. The new species is currently known only from offshore areas in north Western Australia, which is a part of the world where coral bleaching events have severely impacted the scleractinian community over the last two decades. Field observations indicate individuals of both H. coerulea and H. hiberniana sp. nov. were intact after the 2016 Scott Reef thermal stress event, and we discuss the possibility that bleaching resistant non-scleractinian reef builders such as Heliopora could provide new ecological opportunities for the reconfiguration of future reefs by filling empty niches and functional roles left open by the regression of scleractinian corals.


Subject(s)
Anthozoa/physiology , Animals , Anthozoa/classification , Anthozoa/genetics , Anthozoa/growth & development , Coral Reefs , Genotype , Microsatellite Repeats/genetics , Microscopy, Electron, Scanning , Phylogeny , Reproduction , Western Australia
3.
PhytoKeys ; (95): 37-70, 2018.
Article in English | MEDLINE | ID: mdl-29674926

ABSTRACT

The taxonomy of Quercus langbianensis and its relatives in Vietnam and Cambodia have been revised based on evidence obtained from field observations, morphological comparison of herbarium specimens and molecular analyses using both classic and next generation DNA markers. Based on Bayesian inference using rbcL, matK and ITS regions and Neighbour-joining tree using genome-wide sequences amplified with multiplexed inter-simple sequence repeat (ISSR) primers (MIG-seq), the authors recognised ten species in the complex in Vietnam and Cambodia, three of which are newly described in this paper: Q. baolamensissp. nov., Q. bidoupensissp. nov. and Q. honbaensissp. nov. These new species are all phenotypically similar to Q. langbianensiss. str. in having lanceolate to oblanceolate leaf shape, upper 4-5/6-serrated leaf margin, acute or acuminate leaf apex and bracts of cupule arranged in 5-9 rings but distinguished both morphologically and phylogenetically. In molecular phylogenetic reconstructions, Q. bidoupensis is not close to any other species. In the Bayesian tree, Q. honbaensis is sister to both Q. blaoensis and Q. camusiae that are found in the same locality but morphologically distinct and those three species are sister to Q. langbianensiss. str., while Quercus baolamensis is not sister to Q. langbianensiss. str. in both the Bayesian tree and MIG-seq tree. In addition, Q. cambodiensis and Q. baniensis previously reduced to Q. langbianensiss. lat. have been recognised as distinct species. Six species were in need of lectotypification and that is undertaken herein.

4.
Zoolog Sci ; 30(3): 178-84, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23480377

ABSTRACT

Mesohabitat selection in fluvial fishes was studied in a small tropical stream of the Malay Peninsula. A total of 681 individuals representing 24 species were sampled at 45 stations within heterogeneous stream (ca. 1 km in length), in which water depth, water velocity, substrate size, and riparian canopy cover were measured as environmental variables. A canonical correspondence analysis (CCA) yielded a diagram that shows a specific mesohabitat selection of the fish assemblage, in which the species were plotted widely on the CCA1-CCA2 biplot. Generalized linear model also revealed a significant pattern of the mesohabitat selection of several species. Water velocity and substrate size mainly separated on CCA1, indicating variation of pool (deep, slow-flow section) and riffle (shallow, fast-flow section) structures is a primary factor of mesohabitat selection in the fluvial fish assemblage. The mean body weight of species significantly correlated with CCA1; larger species tended to inhabit pools, while small ones occupied riffles. The riparian canopy cover separated on CCA2. The trophic level of species significantly correlated with CCA2; herbivorous species (low trophic level) selected open sites without riparian cover, whereas omnivorous/carnivorous (middle-high trophic level) species preferred highly covered sites. In conclusion, our results suggest that mesohabitat selection is closely related to the species feeding habit, which is consistent with the results of previous studies.


Subject(s)
Ecosystem , Fishes/classification , Rivers , Tropical Climate , Animals , Fishes/physiology , Human Activities , Malaysia
SELECTION OF CITATIONS
SEARCH DETAIL
...