Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cardiovasc Intervent Radiol ; 45(12): 1822-1831, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36109387

ABSTRACT

PURPOSE: Clinical data indicate that the drug density on drug-coated balloons (DCBs) might have a role on treatment effect and durability. The aim of the current study was to investigate inhibition of neointimal formation and potential adverse effects after treatment with a novel double-dose DCB in swine. MATERIAL AND METHODS: A four-week study was performed in peripheral arteries of 12 domestic pigs after vessel injury and stent implantation. The novel double-dose DCB with 6-µg paclitaxel (Ptx)/mm2 balloon surface (1 × 6) was compared to a standard DCB with 3.5 µg Ptx/mm2 (3.5) and uncoated balloons (POBA). Potential adverse effects were stimulated by using three fully overlapping DCBs with 6 µg Ptx/mm2 each (3 × 6). Quantitative angiography, histomorphometry and histopathological analyses were performed. RESULTS: Higher paclitaxel doses per square millimeter of treated arteries were associated with reduced late lumen loss (LLL) in quantitative angiography 4 weeks after treatment (POBA: 0.91 ± 0.75 mm; 3.5: 0.45 ± 0.53 mm; 1 × 6: 0.21 ± 0.41 mm; 3 × 6: - 0.38 ± 0.65 mm). In histomorphometry, maximal neointimal thickness and neointimal area were the lowest for the 1 × 6 group (0.15 ± 0.06 mm/1.5 ± 0.4 mm2), followed by 3 × 6 (0.20 ± 0.07 mm/1.8 ± 0.4 mm2), 3.5 (0.22 ± 0.12 mm/2.2 ± 1.1 mm2) and POBA (0.30 ± 0.07 mm/3.2 ± 0.7 mm2). Downstream tissue showed histopathological changes in all groups including POBA, in larger number and different quality (e.g., edema, inflammation, vessel wall necrosis, vasculitis and perivasculitis) in the 3 × 6 group, which did not cause clinical or functional abnormalities throughout the study. CONCLUSION: Treatment with the double-dose DCB (6 µg Ptx/mm2) tended to increase inhibition of in-stent neointimal formation and to diminish LLL after peripheral intervention in the porcine model compared to a market-approved DCB with 3.5 µg Ptx/mm2.


Subject(s)
Angioplasty, Balloon , Peripheral Arterial Disease , Swine , Animals , Paclitaxel/adverse effects , Angioplasty, Balloon/adverse effects , Coated Materials, Biocompatible , Popliteal Artery , Femoral Artery/diagnostic imaging , Neointima , Constriction, Pathologic , Treatment Outcome , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/therapy
2.
Catheter Cardiovasc Interv ; 95(2): 319-328, 2020 02.
Article in English | MEDLINE | ID: mdl-31696642

ABSTRACT

BACKGROUND: The diameter of balloons or stents is selected according to the estimated reference vessel diameter and do not adapt to the vessel anatomy. The aim of the present preclinical studies was to investigate a novel, vessel anatomy adjusting hypercompliant drug-coated balloon catheter (HCDCB). METHODS: Hypercompliant balloon membranes were coated in a constricted state with high drug density. Drug adherence was investigated in vitro, transfer to the porcine peripheral arteries and longitudinal distribution in vivo. In young domestic swine, neointimal proliferation was induced by vessel overstretch and continuous irritation by permanent stents. Uncoated hypercompliant balloons (HCB), and standard uncoated balloons and drug-coated balloons (DCB) served as controls. Efficacy was assessed by angiography, optical coherence tomography (OCT), and histomorphometry. RESULTS: HCDCB lost 18.0 ± 3.9% of dose during in vitro simulated delivery to the lesion. Drug transfer to the vessel wall was 13.9 ± 6.4% and drug concentration was 1,044 ± 529 ng/mg tissue. Four weeks after treatment, the histomorphometric neointimal area was smaller with HCDCB versus uncoated HCB (2.39 ± 0.55 mm2 vs. 3.26 ± 0.72 mm2 , p = .038) and area stenosis (OCT) was less (11.6 ± 6.9% vs. 24.7 ± 9.7%, p = .022). No premature death occurred and no in-life clinical symptoms or treatment-associated thrombi were observed. CONCLUSIONS: HCDCB were found to inhibit excessive neointimal proliferation. Balloon adaption to different vessel diameters and shapes may provide drug-delivery in irregular lumen and facilitate balloon selection.


Subject(s)
Angioplasty, Balloon/instrumentation , Cardiovascular Agents/administration & dosage , Coated Materials, Biocompatible , Iliac Artery , Paclitaxel/administration & dosage , Vascular Access Devices , Angiography , Angioplasty, Balloon/adverse effects , Animals , Cardiovascular Agents/toxicity , Cell Proliferation , Equipment Design , Iliac Artery/diagnostic imaging , Iliac Artery/pathology , Neointima , Paclitaxel/toxicity , Sus scrofa , Time Factors , Tomography, Optical Coherence
3.
Pacing Clin Electrophysiol ; 26(12): 2253-63, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14675009

ABSTRACT

Treatment of ventricular tachyarrhythmias in the setting of chronic myocardial infarction requires accurate characterization of the arrhythmia substrate. New mapping technologies have been developed that facilitate identification and ablation of critical areas even in rapid, hemodynamically unstable ventricular tachycardia. A noncontact mapping system was used to analyze induced ventricular tachycardia in a closed-chest sheep model of chronic myocardial infarction. Twelve sheep were studied 96 +/- 10 days after experimental myocardial infarction. During programmed stimulation, 15 different ventricular tachycardias were induced in nine animals. Induced ventricular tachycardia had a mean cycle length of 190 +/- 30 ms. In 12 ventricular tachycardias, earliest endocardial activity was recorded from virtual electrodes, preceding the surface QRS onset by 30 +/- 7 ms. Noncontact mapping identified diastolic activity in ten ventricular tachycardias. Diastolic potentials were recorded over a variable zone, spanning more than 30 mm. Timing of diastolic potentials varied from early to late diastole and could be traced back to the endocardial exit site. Entrainment with overdrive pacing was attempted in nine ventricular tachycardias, with concealed entrainment observed in seven. Abnormal endocardium in the area of chronic myocardial infarction identified by unipolar peak voltage mapping was confirmed by magnetic resonance imaging. These data suggest that induced ventricular tachycardia in the late phase of myocardial infarction in the sheep model is due to macroreentry involving the infarct borderzone. The combination of this animal model with noncontact mapping technology will allow testing of new strategies to cure and prevent ventricular tachycardia in the setting of chronic myocardial infarction.


Subject(s)
Disease Models, Animal , Myocardial Infarction/physiopathology , Tachycardia, Ventricular/physiopathology , Animals , Electrophysiology , Endocardium/physiopathology , Female , Magnetic Resonance Imaging , Myocardial Infarction/pathology , Sheep , Tachycardia, Ventricular/pathology
SELECTION OF CITATIONS
SEARCH DETAIL