Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4219, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452020

ABSTRACT

Recent analyses of public microbial genomes have found over a million biosynthetic gene clusters, the natural products of the majority of which remain unknown. Additionally, GNPS harbors billions of mass spectra of natural products without known structures and biosynthetic genes. We bridge the gap between large-scale genome mining and mass spectral datasets for natural product discovery by developing HypoRiPPAtlas, an Atlas of hypothetical natural product structures, which is ready-to-use for in silico database search of tandem mass spectra. HypoRiPPAtlas is constructed by mining genomes using seq2ripp, a machine-learning tool for the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs). In HypoRiPPAtlas, we identify RiPPs in microbes and plants. HypoRiPPAtlas could be extended to other natural product classes in the future by implementing corresponding biosynthetic logic. This study paves the way for large-scale explorations of biosynthetic pathways and chemical structures of microbial and plant RiPP classes.


Subject(s)
Biological Products , Ribosomes , Ribosomes/metabolism , Biological Products/chemistry , Peptides/chemistry , Databases, Factual , Tandem Mass Spectrometry , Protein Processing, Post-Translational
2.
J Am Chem Soc ; 142(42): 17887-17891, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33044062

ABSTRACT

The single-chained sphingolipid sphingosine is an essential structural lipid and signaling molecule. Abnormal sphingosine metabolism is observed in several diseases, including cancer, diabetes, and Alzheimer's. Despite its biological importance, there is a lack of tools for detecting sphingosine in living cells. This is likely due to the broader challenge of developing highly selective and live-cell compatible affinity probes for hydrophobic lipid species. In this work, we have developed a small molecule fluorescent turn-on probe for labeling sphingosine in living cells. We demonstrate that this probe exhibits a dose-dependent response to sphingosine and is able to detect endogenous pools of sphingosine. Using our probe, we successfully detected sphingosine accumulation in cells from patients with Niemann-Pick type C1 (NPC1), a lipid transport disorder in which increased sphingosine mediates disease progression. This work provides a simple and accessible method for the detection of sphingosine and should facilitate study of this critical signaling lipid in biology and disease.


Subject(s)
Aldehydes/chemistry , Fluorescent Dyes/chemistry , Small Molecule Libraries/chemistry , Sphingosine/analysis , HeLa Cells , Humans , Microscopy, Fluorescence , Molecular Structure , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...