Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Eur J Med Chem ; 240: 114612, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35863274

ABSTRACT

Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.


Subject(s)
Positron-Emission Tomography , Pyridines , Animals , Brain/diagnostic imaging , Brain/metabolism , Cholesterol 24-Hydroxylase/metabolism , Mice , Piperidines/metabolism , Piperidines/pharmacology , Positron-Emission Tomography/methods , Pyridines/metabolism
2.
Epilepsia ; 63(6): 1580-1590, 2022 06.
Article in English | MEDLINE | ID: mdl-35316533

ABSTRACT

OBJECTIVE: The formation of 24S-hydroxycholesterol is a brain-specific mechanism of cholesterol catabolism catalyzed by cholesterol 24-hydroxylase (CYP46A1, also known as CH24H). CH24H has been implicated in various biological mechanisms, whereas pharmacological lowering of 24S-hydroxycholesterol has not been fully studied. Soticlestat is a novel small-molecule inhibitor of CH24H. Its therapeutic potential was previously identified in a mouse model with an epileptic phenotype. In the present study, the anticonvulsive property of soticlestat was characterized in rodent models of epilepsy that have long been used to identify antiseizure medications. METHODS: The anticonvulsive property of soticlestat was investigated in maximal electroshock seizures (MES), pentylenetetrazol (PTZ) acute seizures, 6-Hz psychomotor seizures, audiogenic seizures, amygdala kindling, PTZ kindling, and corneal kindling models. Soticlestat was characterized in a PTZ kindling model under steady-state pharmacokinetics to relate its anticonvulsive effects to pharmacodynamics. RESULTS: Among models of acutely evoked seizures, whereas anticonvulsive effects of soticlestat were identified in Frings mice, a genetic model of audiogenic seizures, it was found ineffective in MES, acute PTZ seizures, and 6-Hz seizures. The protective effects of soticlestat against audiogenic seizures increased with repetitive dosing. Soticlestat was also tested in models of progressive seizure severity. Soticlestat treatment delayed kindling acquisition, whereas fully kindled animals were not protected. Importantly, soticlestat suppressed the progression of seizure severity in correlation with 24S-hydroxycholesterol lowering in the brain, suggesting that 24S-hydroxycholesterol can be aggressively reduced to produce more potent effects on seizure development in kindling acquisition. SIGNIFICANCE: The data collectively suggest that soticlestat can ameliorate seizure symptoms through a mechanism distinct from conventional antiseizure medications. With its novel mechanism of action, soticlestat could constitute a novel class of antiseizure medications for treatment of intractable epilepsy disorders such as developmental and epileptic encephalopathy.


Subject(s)
Epilepsy , Kindling, Neurologic , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Cholesterol 24-Hydroxylase/metabolism , Disease Models, Animal , Epilepsy/drug therapy , Mice , Pentylenetetrazole/toxicity , Piperidines/pharmacology , Pyridines/pharmacology , Seizures/drug therapy
3.
J Med Chem ; 65(4): 3343-3358, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35166541

ABSTRACT

Cholesterol 24-hydroxylase (CH24H or CYP46A1) is a brain-specific cytochrome P450 enzyme that metabolizes cholesterol into 24S-hydroxycholesterol (24HC) for regulating brain cholesterol homeostasis. For the development of a novel and potent CH24H inhibitor, we designed and synthesized 3,4-disubstituted pyridine derivatives using a structure-based drug design approach starting from compounds 1 (soticlestat) and 2 (thioperamide). Optimization of this series by focusing on ligand-lipophilicity efficiency value resulted in the discovery of 4-(4-methyl-1-pyrazolyl)pyridine derivative 17 (IC50 = 8.5 nM) as a potent and highly selective CH24H inhibitor. The X-ray crystal structure of CH24H in complex with compound 17 revealed a unique binding mode. Both blood-brain barrier penetration and reduction of 24HC levels (26% reduction) in the mouse brain were confirmed by oral administration of 17 at 30 mg/kg, indicating that 17 is a promising tool for the novel and selective inhibition of CH24H.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/pharmacology , Cholesterol 24-Hydroxylase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Animals , Anticholesteremic Agents/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Cholesterol/metabolism , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacokinetics , Female , Hydroxycholesterols , Lipids/chemistry , Mice , Mice, Inbred C57BL , Structure-Activity Relationship
4.
Neurosci Lett ; 771: 136460, 2022 02 06.
Article in English | MEDLINE | ID: mdl-35051437

ABSTRACT

Transcranial magnetic stimulation (TMS) is a neurophysiological technique that enables noninvasive evaluation of neuronal excitability in the brain. In the past, a large number of antiepileptic drugs were shown to increase the motor threshold (MT) in clinical TMS studies, suggesting the inhibition of excessive neuronal excitability. To facilitate drug development, the confirmation of similar changes in neurophysiological biomarkers in both preclinical and clinical studies is crucial; however, until now, there have been no data showing the drug efficacies on neuronal excitabilities as measured using TMS in rodents. In this study, we found that the antiepileptic drugs, lamotrigine (10 mg/kg) and retigabine (5 mg/kg), significantly increased the MT in rats using TMS, which is similar to clinical study findings. In addition, we demonstrated that these drugs could inhibit maximal electroshock (MES)-induced seizures in rats when given at the same dose required to be effective in the TMS experiment. These findings suggest that the effects of antiepileptic drugs in our rat TMS system have a similar sensitivity to that of the antiepileptic effects in rats with MES-induced seizures. The measurement of MT in a TMS study may be a noninvasive translational approach for predicting antiepileptic efficacy in drug development.


Subject(s)
Anticonvulsants/therapeutic use , Carbamates/therapeutic use , Evoked Potentials, Motor , Lamotrigine/therapeutic use , Phenylenediamines/therapeutic use , Seizures/drug therapy , Animals , Electroshock/adverse effects , Male , Rats , Rats, Sprague-Dawley , Seizures/etiology , Transcranial Magnetic Stimulation
5.
Eur J Nucl Med Mol Imaging ; 49(4): 1148-1156, 2022 03.
Article in English | MEDLINE | ID: mdl-34651220

ABSTRACT

PURPOSE: Cholesterol 24-hydroxylase (CH24H) is a brain-specific enzyme that plays a major role in brain cholesterol homeostasis by converting cholesterol into 24S-hydroxycholesterol. The selective CH24H inhibitor soticlestat (TAK-935) is being pursued as a drug for treatment of seizures in developmental and epileptic encephalopathies. Herein, we describe the successful discovery and the preclinical validation of the novel radiolabeled CH24H ligand (3-[18F]fluoroazetidin-1-yl){1-[4-(4-fluorophenyl)pyrimidin-5-yl]piperidin-4-yl}methanone ([18F]T-008) and its tritiated analog, [3H]T-008. METHODS: In vitro autoradiography (ARG) studies in the CH24H wild-type (WT) and knockout (KO) mouse brain sections were conducted using [3H]T-008. PET imaging was conducted in two adult rhesus macaques using [18F]T-008. Each macaque received two test-retest baseline scans and a series of two blocking doses of soticlestat administered prior to [18F]T-008 to determine the CH24H enzyme occupancy. PET data were analyzed with Logan graphical analysis using plasma input. A Lassen plot was applied to estimate CH24H enzyme occupancy by soticlestat. RESULTS: In ARG studies, binding of [3H]T-008 was specific to CH24H in the mouse brain sections, which was not observed in CH24H KO or in wild-type mice after pretreatment with soticlestat. In rhesus PET studies, the rank order of [18F]T-008 uptake was striatum > cortical regions > cerebellum, which was consistent with CH24H distribution in the brain. Pre-blocking with soticlestat reduced the maximum uptake and increased the washout in all brain regions in a dose-dependent manner. Calculated global occupancy values for soticlestat at a dose of 0.89 mg/kg were 97-98%, indicating maximum occupancy. CONCLUSION: The preclinical in vitro and in vivo evaluation of labeled T-008 demonstrates that [18F]T-008 is suitable for imaging CH24H in the brain and warrants further studies in humans.


Subject(s)
Piperidines , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Cholesterol 24-Hydroxylase/metabolism , Humans , Macaca mulatta/metabolism , Mice , Positron-Emission Tomography/methods , Pyridines
6.
Epilepsia ; 62(11): 2845-2857, 2021 11.
Article in English | MEDLINE | ID: mdl-34510432

ABSTRACT

OBJECTIVE: Dravet syndrome is a severe developmental and epileptic encephalopathy (DEE) most often caused by de novo pathogenic variants in SCN1A. Individuals with Dravet syndrome rarely achieve seizure control and have significantly elevated risk for sudden unexplained death in epilepsy (SUDEP). Heterozygous deletion of Scn1a in mice (Scn1a+/- ) recapitulates several core phenotypes, including temperature-dependent and spontaneous seizures, SUDEP, and behavioral abnormalities. Furthermore, Scn1a+/- mice exhibit a similar clinical response to standard anticonvulsants. Cholesterol 24-hydroxlase (CH24H) is a brain-specific enzyme responsible for cholesterol catabolism. Recent research has indicated the therapeutic potential of CH24H inhibition for diseases associated with neural excitation, including seizures. METHODS: In this study, the novel compound soticlestat, a CH24H inhibitor, was administered to Scn1a+/- mice to investigate its ability to improve Dravet-like phenotypes in this preclinical model. RESULTS: Soticlestat treatment reduced seizure burden, protected against hyperthermia-induced seizures, and completely prevented SUDEP in Scn1a+/- mice. Video-electroencephalography (EEG) analysis confirmed the ability of soticlestat to reduce occurrence of electroclinical seizures. SIGNIFICANCE: This study demonstrates that soticlestat-mediated inhibition of CH24H provides therapeutic benefit for the treatment of Dravet syndrome in mice and has the potential for treatment of DEEs.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Piperidines , Pyridines , Seizures, Febrile , Sudden Unexpected Death in Epilepsy , Animals , Cholesterol 24-Hydroxylase/antagonists & inhibitors , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsy/genetics , Epileptic Syndromes , Mice , Mortality, Premature , Mutation , NAV1.1 Voltage-Gated Sodium Channel/genetics , Piperidines/pharmacology , Pyridines/pharmacology , Seizures/etiology , Seizures/genetics , Seizures, Febrile/drug therapy , Sudden Unexpected Death in Epilepsy/etiology
7.
J Med Chem ; 64(16): 12228-12244, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387987

ABSTRACT

Cholesterol 24-hydroxylase (CH24H, CYP46A1), a brain-specific cytochrome P450 (CYP) family enzyme, plays a role in the homeostasis of brain cholesterol by converting cholesterol to 24S-hydroxycholesterol (24HC). Despite a wide range of potential of CH24H as a drug target, no potent and selective inhibitors have been identified. Here, we report on the structure-based drug design (SBDD) of novel 4-arylpyridine derivatives based on the X-ray co-crystal structure of hit derivative 1b. Optimization of 4-arylpyridine derivatives led us to identify 3v ((4-benzyl-4-hydroxypiperidin-1-yl)(2,4'-bipyridin-3-yl)methanone, IC50 = 7.4 nM) as a highly potent, selective, and brain-penetrant CH24H inhibitor. Following oral administration to mice, 3v resulted in a dose-dependent reduction of 24HC levels in the brain (1, 3, and 10 mg/kg). Compound 3v (soticlestat, also known as TAK-935) is currently under clinical investigation for the treatment of Dravet syndrome and Lennox-Gastaut syndrome as a novel drug class for epilepsies.


Subject(s)
Cholesterol 24-Hydroxylase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Animals , Brain/drug effects , Brain/enzymology , Cholesterol 24-Hydroxylase/metabolism , Crystallography, X-Ray , Drug Stability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Female , Humans , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Structure , Piperidines/chemical synthesis , Piperidines/metabolism , Protein Binding , Pyridines/chemical synthesis , Pyridines/metabolism , Structure-Activity Relationship
8.
J Med Chem ; 64(16): 11990-12002, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34347478

ABSTRACT

Diacylglycerol kinase gamma (DGKγ) is a subtype of DGK enzyme, which catalyzes ATP-dependent conversion of diacylglycerol to phosphatidic acid. DGKγ, localized in the brain, plays an important role in the central nervous system. However, its function has not been widely investigated. Positron emission tomography (PET) imaging of DGKγ validates target engagement of therapeutic DGKγ inhibitors and investigates DGKγ levels under normal and disease conditions. In this study, we designed and synthesized a series of 3-acetyl indole derivatives as candidates for PET imaging agents for DGKγ. Among the synthesized compounds, 2-((3-acetyl-1-(6-methoxypyridin-3-yl)-2-methyl-1H-indol-5-yl)oxy)-N-methylacetamide (9) exhibited potent inhibitory activity (IC50 = 30 nM) against DGKγ and desirable physicochemical properties allowing efficient blood-brain barrier penetration and low levels of undesirable nonspecific binding. The radiolabeling of 9 followed by PET imaging of wild-type and DGKγ-deficient mice and rats indicated that [11C]9 ([11C]T-278) specifically binds to DGKγ and yields a high signal-to-noise ratio for DGKγ in rodent brains.


Subject(s)
Brain/diagnostic imaging , Diacylglycerol Kinase/metabolism , Indoles/chemistry , Radiopharmaceuticals/chemistry , Animals , Brain/enzymology , Carbon Radioisotopes/chemistry , Drug Design , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Male , Mice, Inbred C57BL , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley
9.
Xenobiotica ; 51(1): 51-60, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32779988

ABSTRACT

The unbound fractions in plasma (f up) in two mouse models of humanized liver mice, PXB and humanized TK-NOG mice, were compared with human f up values using equilibrium dialysis method. A good relationship between f up values obtained from PXB mice and humans was observed; the f up of 34/39 compounds (87.2%) in PXB mice were within 3-fold of human f up. In contrast, a weak correlation was observed between human and humanized TK-NOG mouse f up values; the f up of 15/24 compounds (62.5%) in humanized TK-NOG mice were within 3-fold of human f up. As different profiles of plasma protein binding (PPB) profiles were observed between PXB and humanized TK-NOG mice, f up evaluation is necessary in each mouse model to utilize these humanized liver mice for pharmacological, drug-drug interaction (DDI), and toxicity studies. The unbound fraction in the mixed plasma of human and SCID mouse plasma (85:15) was well correlated with f up in PXB mice (38/39 compounds within a 3-fold). Thus, this artificial PXB mouse plasma could be used to evaluate PPB.


Subject(s)
Pharmaceutical Preparations/metabolism , Animals , Chimera , Disease Models, Animal , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, SCID , Protein Binding/physiology
10.
Sci Rep ; 10(1): 17081, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33051477

ABSTRACT

Cholesterol 24-hydroxylase (CH24H) is a brain-specific enzyme that converts cholesterol into 24S-hydroxycholesterol, the primary mechanism of cholesterol catabolism in the brain. The therapeutic potential of CH24H activation has been extensively investigated, whereas the effects of CH24H inhibition remain poorly characterized. In this study, the therapeutic potential of CH24H inhibition was investigated using a newly identified small molecule, soticlestat (TAK-935/OV935). The biodistribution and target engagement of soticlestat was assessed in mice. CH24H-knockout mice showed a substantially lower level of soticlestat distribution in the brain than wild-type controls. Furthermore, brain-slice autoradiography studies demonstrated the absence of [3H]soticlestat staining in CH24H-knockout mice compared with wild-type mice, indicating a specificity of soticlestat binding to CH24H. The pharmacodynamic effects of soticlestat were characterized in a transgenic mouse model carrying mutated human amyloid precursor protein and presenilin 1 (APP/PS1-Tg). These mice, with excitatory/inhibitory imbalance and short life-span, yielded a remarkable survival benefit when bred with CH24H-knockout animals. Soticlestat lowered brain 24S-hydroxycholesterol in a dose-dependent manner and substantially reduced premature deaths of APP/PS1-Tg mice at a dose lowering brain 24S-hydroxycholesterol by approximately 50%. Furthermore, microdialysis experiments showed that soticlestat can suppress potassium-evoked extracellular glutamate elevations in the hippocampus. Taken together, these data suggest that soticlestat-mediated inhibition of CH24H may have therapeutic potential for diseases associated with neural hyperexcitation.


Subject(s)
Cholesterol 24-Hydroxylase/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain Diseases/drug therapy , Brain Diseases/metabolism , Brain Diseases/physiopathology , Cholesterol 24-Hydroxylase/deficiency , Cholesterol 24-Hydroxylase/genetics , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Disease Models, Animal , Drug Development , Female , Humans , Hydroxycholesterols/metabolism , Longevity/drug effects , Longevity/genetics , Longevity/physiology , Mice , Mice, Knockout , Mice, Transgenic , Mutant Proteins/genetics , Mutant Proteins/metabolism , Piperidines/chemistry , Piperidines/pharmacokinetics , Presenilin-1/genetics , Presenilin-1/metabolism , Pyridines/chemistry , Pyridines/pharmacokinetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
11.
Pharmacol Res Perspect ; 8(1): e00560, 2020 02.
Article in English | MEDLINE | ID: mdl-31990455

ABSTRACT

M1 muscarinic acetylcholine receptor (M1 R) activation can be a new therapeutic approach for the treatment of cognitive deficits associated with cholinergic hypofunction. However, M1 R activation causes gastrointestinal (GI) side effects in animals. We previously found that an M1 R positive allosteric modulator (PAM) with lower cooperativity (α-value) has a limited impact on ileum contraction and can produce a wider margin between cognitive improvement and GI side effects. In fact, TAK-071, a novel M1 R PAM with low cooperativity (α-value of 199), improved scopolamine-induced cognitive deficits with a wider margin against GI side effects than a high cooperative M1 R PAM, T-662 (α-value of 1786), in rats. Here, we describe the pharmacological characteristics of a novel low cooperative M1 R PAM T-495 (α-value of 170), using the clinically tested higher cooperative M1 R PAM MK-7622 (α-value of 511) as a control. In rats, T-495 caused diarrhea at a 100-fold higher dose than that required for the improvement of scopolamine-induced memory deficits. Contrastingly, MK-7622 showed memory improvement and induction of diarrhea at an equal dose. Combination of T-495, but not of MK-7622, and donepezil at each sub-effective dose improved scopolamine-induced memory deficits. Additionally, in mice with reduced acetylcholine levels in the forebrain via overexpression of A53T α-synuclein (ie, a mouse model of dementia with Lewy bodies and Parkinson's disease with dementia), T-495, like donepezil, reversed the memory deficits in the contextual fear conditioning test and Y-maze task. Thus, low cooperative M1 R PAMs are promising agents for the treatment of memory deficits associated with cholinergic dysfunction.


Subject(s)
Allosteric Regulation/drug effects , Cholinergic Agents/administration & dosage , Diarrhea/chemically induced , Memory Disorders/drug therapy , Receptor, Muscarinic M1/antagonists & inhibitors , Animals , CHO Cells , Cholinergic Agents/adverse effects , Cholinergic Agents/chemistry , Cholinergic Agents/pharmacology , Cricetulus , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Memory Disorders/chemically induced , Mice , Rats , Scopolamine/adverse effects
12.
ACS Med Chem Lett ; 10(10): 1498-1503, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31620240

ABSTRACT

General control nonderepressible 2 (GCN2) is a master regulator kinase of amino acid homeostasis and important for cancer survival in the tumor microenvironment under amino acid depletion. We initiated studies aiming at the discovery of novel GCN2 inhibitors as first-in-class antitumor agents and conducted modification of the substructure of sulfonamide derivatives with expected type I half binding on GCN2. Our synthetic strategy mainly corresponding to the αC-helix allosteric pocket of GCN2 led to significant enhancement in potency and a good pharmacokinetic profile in mice. In addition, compound 6d, which showed slow dissociation in binding on GCN2, demonstrated antiproliferative activity in combination with the asparagine-depleting agent asparaginase in an acute lymphoblastic leukemia (ALL) cell line, and it also displayed suppression of GCN2 pathway activation with asparaginase treatment in the ALL cell line and mouse xenograft model.

13.
Respirol Case Rep ; 7(7): e00458, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31304018

ABSTRACT

Nocardiosis is an uncommon infection caused by Nocardia species, but it can often occur in immunocompromised patients. As computed tomography (CT) findings of pulmonary nocardiosis, consolidation, masses, and nodules are often found, but lymph node enlargement is infrequent. Nocardia exalbida was first isolated in 2006, and there are still few reports on this microorganism. We report a case of pulmonary nocardiosis caused by N. exalbida presenting as a mass and lymph node enlargement that mimicked lung cancer. A 76-year-old man was referred and admitted to our hospital because of persistent cough, sputum production, and chest discomfort. Chest CT showed a mass in the superior segment of the left upper lobe and mediastinal lymph node enlargement. After we performed bronchoscopies, Nocardia species was isolated in a cultured specimen and identified as N. exalbida. This case required differentiation from lung cancer and was difficult to diagnose.

14.
J Med Chem ; 62(10): 4915-4935, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31009559

ABSTRACT

Anaplastic lymphoma kinase (ALK), a member of the receptor tyrosine kinase family, is predominantly expressed in the brain and implicated in neuronal development and cognition. However, the detailed function of ALK in the central nervous system (CNS) is still unclear. To elucidate the role of ALK in the CNS, it was necessary to discover a potent, selective, and brain-penetrant ALK inhibitor. Scaffold hopping and lead optimization of N-(2,4-difluorobenzyl)-3-(1 H-pyrazol-5-yl)imidazo[1,2- b]pyridazin-6-amine 1 guided by a cocrystal structure of compound 1 bound to ALK resulted in the identification of (6-(1-(5-fluoropyridin-2-yl)ethoxy)-1-(5-methyl-1 H-pyrazol-3-yl)-1 H-pyrrolo[2,3- b]pyridin-3-yl)((2 S)-2-methylmorpholin-4-yl)methanone 13 as a highly potent, selective, and brain-penetrable compound. Intraperitoneal administration of compound 13 significantly decreased the phosphorylated-ALK (p-ALK) levels in the hippocampus and prefrontal cortex in the mouse brain. These results suggest that compound 13 could serve as a useful chemical probe to elucidate the mechanism of ALK-mediated brain functions and the therapeutic potential of ALK inhibition.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Brain/drug effects , Drug Discovery/methods , Protein Kinase Inhibitors/chemical synthesis , Animals , Biological Transport , Brain/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , Inhibitory Concentration 50 , LLC-PK1 Cells , Mice , Mice, Inbred ICR , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Swine
15.
Xenobiotica ; 49(12): 1379-1387, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30744481

ABSTRACT

1. The prediction of human pharmacokinetic (PK) parameters is an important theme to select drug candidates from preclinical studies. It is essential to improve the prediction accuracy of compound half-life (t1/2) in humans. In this study, the predictability of t1/2 in humans using PXB mice®, chimeric mice with humanised liver, was assessed using 14 compounds showing long t1/2 in humans. 2. After intravenous administration of the compounds to PXB mice, the plasma concentration-time profiles were fitted using one- or two-compartment models and the human clearance (CLt) and distribution volume (Vdss) were predicted from single-species scaling. Using the obtained parameters, the t1/2 in humans was predicted. Using PXB mice, the predicted t1/2 values of 71.4% of the compounds were within two-fold of the actual values. Meanwhile, based on predictions using SCID mice, the host strain of the PXB mice, only 7.1% of tested compounds were within two-fold. 3. In conclusion, we demonstrated the novel utility of PXB mice for human PK predictions of compounds having long t1/2 in humans.


Subject(s)
Liver , Pharmacokinetics , Animals , Chimera , Half-Life , Hepatocytes , Humans , Liver/drug effects , Male , Mice, SCID , Mice, Transgenic
16.
EMBO Mol Med ; 10(6)2018 06.
Article in English | MEDLINE | ID: mdl-29769258

ABSTRACT

The modulation of pre-mRNA splicing is proposed as an attractive anti-neoplastic strategy, especially for the cancers that exhibit aberrant pre-mRNA splicing. Here, we discovered that T-025 functions as an orally available and potent inhibitor of Cdc2-like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T-025 reduced CLK-dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive-associated biomarker of T-025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T-025 treatment. MYC activation, which altered pre-mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti-tumor efficacy of T-025 in an allograft model of spontaneous, MYC-driven breast cancer, at well-tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC-driven cancer patients.


Subject(s)
Diamines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Quinolines/pharmacology , RNA Splicing/drug effects , Animals , Cell Line, Tumor , Diamines/chemistry , Genes, myc , Humans , Mice , Mice, Transgenic , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/physiology , Pyrimidines/chemistry , Quinolines/chemistry , RNA Splicing/genetics
17.
J Pharmacol Exp Ther ; 365(1): 179-188, 2018 04.
Article in English | MEDLINE | ID: mdl-29440309

ABSTRACT

The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N-methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, (N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia.


Subject(s)
Cognitive Dysfunction/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Phosphodiesterase Inhibitors/pharmacology , Pyrazines/pharmacology , Pyridines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Schizophrenia/complications , Social Behavior , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Avoidance Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Disease Models, Animal , Locomotion/drug effects , Male , Memory, Episodic , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphodiesterase Inhibitors/therapeutic use , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Receptors, AMPA/metabolism , Schizophrenia/chemically induced
18.
Chem Pharm Bull (Tokyo) ; 65(11): 1058-1077, 2017.
Article in English | MEDLINE | ID: mdl-29093293

ABSTRACT

It has been hypothesized that selective inhibition of phosphodiesterase (PDE) 2A could potentially be a novel approach to treat cognitive impairment in neuropsychiatric and neurodegenerative disorders through augmentation of cyclic nucleotide signaling pathways in brain regions associated with learning and memory. Following our earlier work, this article describes a drug design strategy for a new series of lead compounds structurally distinct from our clinical candidate 2 (TAK-915), and subsequent medicinal chemistry efforts to optimize potency, selectivity over other PDE families, and other preclinical properties including in vitro phototoxicity and in vivo rat plasma clearance. These efforts resulted in the discovery of N-((1S)-2-hydroxy-2-methyl-1-(4-(trifluoromethoxy)phenyl)propyl)-6-methyl-5-(3-methyl-1H-1,2,4-triazol-1-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (20), which robustly increased 3',5'-cyclic guanosine monophosphate (cGMP) levels in the rat brain following an oral dose, and moreover, attenuated MK-801-induced episodic memory deficits in a passive avoidance task in rats. These data provide further support to the potential therapeutic utility of PDE2A inhibitors in enhancing cognitive performance.


Subject(s)
Cognition Disorders/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Drug Discovery , Phosphodiesterase Inhibitors/pharmacology , Pyrazines/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , 3T3 Cells , Administration, Oral , Animals , COS Cells , Cell Survival/drug effects , Chlorocebus aethiops , Cognition Disorders/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Molecular Structure , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/chemistry , Powder Diffraction , Pyrazines/chemistry , Pyrazoles/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Rats , Rats, Long-Evans , Solubility , Structure-Activity Relationship , Thermodynamics
19.
Xenobiotica ; 47(12): 1052-1063, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27892765

ABSTRACT

1. The aim of the present study was to evaluate the usefulness of chimeric mice with humanised liver (PXB mice) for the prediction of clearance (CLt) and volume of distribution at steady state (Vdss), in comparison with monkeys, which have been reported as a reliable model for human pharmacokinetics (PK) prediction, and with rats, as a conventional PK model. 2. CLt and Vdss values in PXB mice, monkeys and rats were determined following intravenous administration of 30 compounds known to be mainly eliminated in humans via the hepatic metabolism by various drug-metabolising enzymes. Using single-species allometric scaling, human CLt and Vdss values were predicted from the three animal models. 3. Predicted CLt values from PXB mice exhibited the highest predictability: 25 for PXB mice, 21 for monkeys and 14 for rats were predicted within a three-fold range of actual values among 30 compounds. For predicted human Vdss values, the number of compounds falling within a three-fold range was 23 for PXB mice, 24 for monkeys, and 16 for rats among 29 compounds. PXB mice indicated a higher predictability for CLt and Vdss values than the other animal models. 4. These results demonstrate the utility of PXB mice in predicting human PK parameters.


Subject(s)
Pharmaceutical Preparations/metabolism , Pharmacokinetics , Animals , Chimera , Half-Life , Haplorhini , Hepatocytes/metabolism , Humans , Inactivation, Metabolic , Liver/metabolism , Mice , Rats
20.
Kekkaku ; 92(1): 11-19, 2017 Jan.
Article in Japanese | MEDLINE | ID: mdl-30646468

ABSTRACT

[Objectives] To investigate the adverse reactions of antimicrobial drugs in multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR- TB) patients. [Results] Sixty-six patients with MDR-TB who have been treated from 2010 through 2014 were evaluated in the retro- spective analysis. Variety of adverse reactions including psychological reaction, central nervous system toxicity, ophthalmic toxicity, peripheral neurotoxicity, gastrointestinal reactions, hematologic abnormalities, musculoskeletal adverse effects, and endocrine disorder, were observed. However, there was no fatal case due to the adverse reactions of the anti-tubercu- losis drugs in this observation. [Conclusions] Drugs for MDR-TB and XDR-TB treatment are limited and the adverse reactions of drugs for MDR-TB and XDR-TB are not well-known. Therefore, the treatment may fail due to inappropriate management of adverse events. MDR-TB and XDR-TB should be treated by the experts of the adverse reactions of all anti-tuberculosis drugs.


Subject(s)
Antitubercular Agents/adverse effects , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antitubercular Agents/therapeutic use , Female , Humans , Male , Middle Aged , Tuberculosis, Multidrug-Resistant/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL